Kaohsiung Opto-Electronics Inc.

FOR MESSRS : $\qquad$ DATE: Jun. $10^{\text {th }}, 2019$

## CUSTOMER'S ACCEPTANCE SPECIFICATIONS

## TX17D01VM5BAA

Contents

| No. | ITEM | SHEET No. | PAGE |
| :---: | :--- | :--- | :--- |
| 1 | COVER | 7B64PS 2701-TX17D01VM5BAA-3 | $1-1 / 1$ |
| 2 | RECORD OF REVISION | 7B64PS 2702-TX17D01VM5BAA-3 | $2-1 / 1$ |
| 3 | GENERAL DATA | 7B64PS 2703-TX17D01VM5BAA-3 | $3-1 / 1$ |
| 4 | ABSOLUTE MAXIMUM RATINGS | 7B64PS 2704-TX17D01VM5BAA-3 | $4-1 / 1$ |
| 5 | ELECTRICAL CHARACTERISTICS | 7B64PS 2705-TX17D01VM5BAA-3 | $5-1 / 1$ |
| 6 | OPTICAL CHARACTERISTICS | 7B64PS 2706-TX17D01VM5BAA-3 | $6-1 / 2 \sim 2 / 2$ |
| 7 | BLOCK DIAGRAME | 7B64PS 2707-TX17D01VM5BAA-3 | $7-1 / 1$ |
| 8 | RELIABILITY TESTS | 7B64PS 2708-TX17D01VM5BAA-3 | $8-1 / 1$ |
| 9 | LCD INTERFACE | 7B64PS 2709-TX17D01VM5BAA-3 | $9-1 / 7 \sim 7 / 7$ |
| 10 | OUTLINE DIMENSIONS | 7B64PS 2710-TX17D01VM5BAA-3 | $10-1 / 2 ~ 2 / 2$ |
| 11 | APPEARANCE STANDARD | 7B64PS 2711-TX17D01VM5BAA-3 | $11-1 / 3 \sim 3 / 3$ |
| 12 | PRECAUTIONS | 7B64PS 2712-TX17D01VM5BAA-3 | $12-1 / 2 \sim 2 / 2$ |
| 13 | DESIGNATION OF LOT MARK | 7B64PS 2713-TX17D01VM5BAA-3 | 13-1/1 |

ACCEPTED BY: $\qquad$ PROPOSED BY: $\qquad$ Oblack Tsai SHEET
NO NO.

## 2. RECORD OF REVISION



## 3. GENERAL DATA

### 3.1 DISPLAY FEATURES

This module is a $6.5^{\prime \prime}$ VGA of 4:3 format amorphous silicon TFT. The pixel format is vertical stripe and sub pixels are arranged as R (red), G (green), B (blue) sequentially. This display is RoHS compliant, COG (chip on glass) technology and LED backlight are applied on this display.

| Part Name | TX17D01VM5BAA |
| :--- | :--- |
| Module Dimensions | $153.0(\mathrm{~W}) \mathrm{mm} \times 118.0(\mathrm{H}) \mathrm{mm} \times 9.1(\mathrm{D}) \mathrm{mm}$ typ. |
| LCD Active Area | $132.48(\mathrm{~W}) \mathrm{mm} \times 99.36(\mathrm{H}) \mathrm{mm}$ |
| Pixel Pitch | $0.207(\mathrm{~W}) \mathrm{mm} \times 0.207(\mathrm{H}) \mathrm{mm}$ |
| Resolution | $640 \times 3(\mathrm{RGB})(\mathrm{W}) \times 480(\mathrm{H})$ dots |
| Color Pixel Arrangement | R, G, B Vertical stripe |
| LCD Type | Transmissive Color TFT; Normally White |
| Display Type | Active Matrix |
| Number of Colors | 262 k Colors |
| Backlight | 12 LEDs (3 series $\times 4)$ |
| Weight | 190 g |
| Interface | C-MOS; 18-bit RGB; 31 pins |
| Power Supply Voltage | 3.3 V for LCD; 12V for Backlight |
| Power Consumption | 0.48 W for LCD; 4.08 W for Backlight |
| Viewing Direction | Super Wide Version |


| KAOHSIUNG OPTO-ELECTRONICS INC. | SHEET <br> NO. | 7B64PS 2703-TX17D01VM5BAA-3 | PAGE | $3-1 / 1$ |
| :--- | :--- | :--- | :--- | :--- |

## 4. ABSOLUTE MAXIMUM RATINGS

| Item | Symbol | Min. | Max. | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Supply Voltage | $\mathrm{V}_{\mathrm{DD}}$ | -0.3 | 5 | V | - |
| Input Voltage of Logic | $\mathrm{V}_{1}$ | -0.3 | $\mathrm{~V}_{\mathrm{DD}}+0.3$ | V | Note 1 |
| Operating Temperature | Top | -20 | 70 | ${ }^{\circ} \mathrm{C}$ | Note 2 |
| Storage Temperature | Tst | -30 | 80 | ${ }^{\circ} \mathrm{C}$ | Note 2 |

Note 1: The rating is defined for the signal voltages of the interface such as CLK, DE, Hsync, Vsync and RGB data bus.

Note 2: The maximum rating is defined as above based on the chamber temperature, which might be different from ambient temperature after assembling the panel into the application. Moreover, some temperature-related phenomenon as below needed to be noticed:

- Background color, contrast and response time would be different in temperatures other than $25^{\circ} \mathrm{C}$.
- Operating under high temperature will shorten LED lifetime.


## 5. ELECTRICAL CHARACTERISTICS

### 5.1 LCD CHARACTERISTICS

| $T_{a}=25{ }^{\circ} \mathrm{C}, \mathrm{Vss}=0 \mathrm{~V}$ |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Item | Symbol | Condition | Min. | Typ. | Max. | Unit | Remarks |  |
| Power Supply Voltage | $\mathrm{V}_{\mathrm{DD}}$ | - | 3.0 | 3.3 | 3.6 | V | - |  |
| Input Voltage of Logic | $\mathrm{V}_{1}$ | " H " level | $0.7 \mathrm{~V}_{\mathrm{DD}}$ | - | $\mathrm{V}_{\mathrm{DD}}$ | V | Note 1 |  |
|  |  | $\mathrm{V}_{\mathrm{SS}}$ | - | $0.3 \mathrm{~V}_{\mathrm{DD}}$ |  |  |  |  |
| Power Supply Current | $\mathrm{I}_{\mathrm{DD}}$ | $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$ | - | 144 | 172 | mA | Note 2,3 |  |
| Vsync Frequency | $f_{v}$ | - | - | 60 | 66 | Hz | - |  |
| Hsync Frequency | $f_{H}$ | - | 27.86 | 31.5 | 37.62 | KHz | - |  |
| CLK Frequency | $f_{C L K}$ | - | 22.29 | 25.2 | 37.62 | MHz | - |  |

Note 1: The rating is defined for the signal voltages of the interface such as DE, CLK and RGB data bus.

Note 2: An all black check pattern is used when measuring $\mathrm{I}_{\mathrm{DD}} . f_{v}$ is set to 60 Hz .
Note 3: 1.0A fuse is applied in the module for $\mathrm{I}_{\mathrm{DD}}$. For display activation and protection purpose, power supply is recommended larger than 2.5A to start the display and break fuse once any short circuit occurred.

### 5.2 BACKLIGHT CHARACTERISTICS

| Item | Symbol | Condition | Min. | Typ. | Max. | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LED Input Voltage | $\mathrm{V}_{\text {LED }}$ | - | 11.7 | 12 | 12.3 | V | Note1 |
| LED Forward Current (Dim Control) | $\mathrm{I}_{\text {LED }}$ | 0V; 0\% duty | 320 | 340 | 360 | mA | Note 2 |
|  |  | 3.3VDC; 100\% duty | 24 | 30 | 36 |  |  |
| LED lifetime | - | 340 mA | - | 70K | - | hrs | Note 3 |

Note 1: As Fig. 5.1 shown, LED current is constant, 340 mA , controlled by the LED driver when applying $12 \mathrm{~V} \mathrm{~V}_{\text {LED }}$.
Note 2: Dimming function can be obtained by applying DC voltage or PWM signal from the display interface CN1. The recommended PWM signal is $1 \mathrm{~K} \sim 10 \mathrm{~K} \mathrm{~Hz}$ with 3.3 V amplitude.

Note 3: The estimated lifetime is specified as the time to reduce $50 \%$ brightness by applying 340 mA at $25^{\circ} \mathrm{C}$.


Fig. 5.1

## 6. OPTICAL CHARACTERISTICS

The optical characteristics are measured based on the conditions as below:

- Supplying the signals and voltages defined in the section of electrical characteristics.
- The backlight unit needs to be turned on for 30 minutes.
- The ambient temperature is $25^{\circ} \mathrm{C}$.
- In the dark room around 500~1000 Ix, the equipment has been set for the measurements as shown in Fig 6.1.

| Item |  | Symbol | Condition | Min. | Typ. | Max. | Unit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Brightness of White |  | - | $\begin{aligned} & \phi=0^{\circ}, \theta=0^{\circ}, \\ & I_{\text {LED }}=340 \mathrm{~mA} \end{aligned}$ | 640 | 800 | - | $\mathrm{cd} / \mathrm{m}^{2}$ | Note 1 |
| Brightness Uniformity |  | - |  | 70 | - | - | \% | Note 2 |
| Contrast Ratio |  | CR |  | - | 350 | - | - | Note 3 |
| Response Time <br> (Rising + Falling) |  | $\mathrm{T}_{\mathrm{r}}+\mathrm{T}_{\mathrm{f}}$ | $\phi=0^{\circ}, \theta=0^{\circ}$ | - | 30 | - | ms | Note 4 |
| NTSC Ratio |  | - | $\phi=0^{\circ}, \theta=0^{\circ}$ | - | 50 | - | \% | - |
| Viewing Angle |  | $\theta \mathrm{x}$ | $\phi=0^{\circ}, \mathrm{CR} \geq 10$ | - | 80 | - | Degree | Note 5 |
|  |  | $\theta \mathrm{x}^{\prime}$ | $\phi=180^{\circ}, \mathrm{CR} \geq 10$ | - | 80 | - |  |  |
|  |  | $\theta \mathrm{y}$ | $\phi=90^{\circ}, \mathrm{CR} \geq 10$ | - | 80 | - |  |  |
|  |  | $\theta \mathrm{y}^{\prime}$ | $\phi=270^{\circ}, \mathrm{CR} \geq 10$ | - | 80 | - |  |  |
| Color Chromaticity | Red | X | $\phi=0^{\circ}, \theta=0^{\circ}$ | 0.54 | 0.59 | 0.64 | - | Note 6 |
|  |  | Y |  | 0.29 | 0.34 | 0.39 |  |  |
|  | Green | X |  | 0.29 | 0.34 | 0.39 |  |  |
|  |  | Y |  | 0.53 | 0.58 | 0.63 |  |  |
|  | Blue | X |  | 0.10 | 0.15 | 0.20 |  |  |
|  |  | Y |  | 0.09 | 0.14 | 0.19 |  |  |
|  | White | X |  | 0.27 | 0.32 | 0.37 |  |  |
|  |  | Y |  | 0.30 | 0.35 | 0.40 |  |  |

Note 1: The brightness is measured from the panel center point, P5 in Fig. 6.2, for the typical value.
Note 2: The brightness uniformity is calculated by the equation as below:

$$
\text { Brightness uniformity }=\frac{\text { Min. Brightness }}{\text { Max. Brightness }} \times 100 \%
$$

, which is based on the brightness values of the 9 points measured by BM-5 as shown in Fig. 6.2.


Fig. 6.1


Fig. 6.2

Note 3: The Contrast Ratio is measured from the center point of the panel, P5, and defined as the following equation:

$$
\mathrm{CR}=\frac{\text { Brightness of White }}{\text { Brightness of Black }}
$$

Note 4: The definition of response time is shown in Fig. 6.3. The rising time is the period from $90 \%$ brightness to $10 \%$ brightness when the data is from white to black. Oppositely, Falling time is the period from $10 \%$ brightness rising to $90 \%$ brightness.

| White | Black | White |
| :---: | :---: | :---: |



Fig. 6.3
Note 5: The definition of viewing angle is shown in Fig. 6.4. Angle $\phi$ is used to represent viewing directions, for instance, $\phi=270^{\circ}$ means 6 o'clock, and $^{\prime} \phi=0^{\circ}$ means $30^{\prime}$ clock. Moreover, angle $\theta$ is used to represent viewing angles from axis Z toward plane XY.

The viewing direction of this display is 12 o'clock, which means that a photograph with gray scale would not be reversed in color and the brightness change would be less from this direction. However, the best contrast peak would be located at 6 o'clock.


Fig 6.4
Note 6: The color chromaticity is measured from the center point of the panel, P5, as shown in Fig. 6.2.

## 7. BLOCK DIAGRAM



Note1: Signals are CLK, Hsync, Vsync, DE, SD, and RGB data bus.

## 8. RELIABILITY TESTS

| Test Item | Condition |  |
| :---: | :---: | :---: |
| High Temperature | 1) Operating <br> 2) $70^{\circ} \mathrm{C}$ | 240 hrs |
| Low Temperature | 1) Operating <br> 2) $-20^{\circ} \mathrm{C}$ | 240 hrs |
| High Temperature | 1) Storage <br> 2) $80^{\circ} \mathrm{C}$ | 240 hrs |
| Low Temperature | 1) Storage <br> 2) $-30^{\circ} \mathrm{C}$ | 240 hrs |
| Heat Cycle | 1) Operating <br> 2) $-20^{\circ} \mathrm{C} \sim 70^{\circ} \mathrm{C}$ <br> 3) $3 \mathrm{hrs} \sim 1 \mathrm{hr} \sim 3 \mathrm{hrs}$ | 240 hrs |
| Thermal Shock | 1) Non-Operating <br> 2) $-35^{\circ} \mathrm{C} \leftrightarrow 85^{\circ} \mathrm{C}$ <br> 3) $0.5 \mathrm{hr} \leftrightarrow 0.5 \mathrm{hr}$ | 240 hrs |
| High Temperature \& Humidity | 1) Operating <br> 2) $40^{\circ} \mathrm{C} \& 85 \% \mathrm{RH}$ <br> 3) Without condensation <br> (Note3) | 240 hrs |
| Vibration | 1) Non-Operating <br> 2) $20 \sim 200 \mathrm{~Hz}$ <br> 3) $2 G$ <br> 4) $X, Y$, and $Z$ directions | 1 hr for each direction |
| Mechanical Shock | 1) Non-Operating <br> 2) 10 ms <br> 3) 50 G <br> 4) $\pm \mathrm{X}, \pm \mathrm{Y}$ and $\pm \mathrm{Z}$ directions | Once for each direction |
| ESD | 1) Operating <br> 2) Tip: $200 \mathrm{pF}, 250 \Omega$ <br> 3) Air discharge for glass: $\pm 8 \mathrm{KV}$ <br> 4) Contact discharge for metal frame: $\pm 8 \mathrm{KV}$ | 1) Glass: 9 points <br> 2) Metal frame: 8 points <br> (Note4) |

Note 1: Display functionalities are inspected under the conditions defined in the specification after the reliability tests.

Note 2: The display is not guaranteed for use in corrosive gas environments.
Note 3: Under the condition of high temperature \& humidity, if the temperature is higher than $40^{\circ} \mathrm{C}$, the humidity needs to be reduced as Fig. 8.1 shown.

Note 4: All pins of LCD interface (CN1) have been tested by $\pm 100 \mathrm{~V}$ contact discharge of ESD under non-operating condition.


Fig. 8.1

| KAOHSIUNG OPTO-ELECTRONICS INC. | SHEET <br> NO. | 7B64PS 2708-TX17D01VM5BAA-3 | PAGE | $8-1 / 1$ |
| :---: | :---: | :---: | :---: | :---: |

## 9. LCD INTERFACE

### 9.1 INTERFACE PIN CONNECTIONS

The display interface connector (CN1) is DF9-31P-1V made by Hirose, and Pin assignment is as below:

| Pin No. | Symbol | Signal |
| :---: | :---: | :---: |
| 1 | GND | Ground |
| 2 | CLK | Dot Clock |
| 3 | HSYNC | Horizontal synchronous signal and mode selection Synchronous Mode: Hsync signal input Data Enable Mode: Open or Low |
| 4 | VSYNC | Vertical synchronous signal |
| 5 | GND | Ground |
| 6 | R0 | Red data (LSB) |
| 7 | R1 | Red data |
| 8 | R2 | Red data |
| 9 | R3 | Red data |
| 10 | R4 | Red data |
| 11 | R5 | Red data (MSB) |
| 12 | GND | Ground |
| 13 | G0 | Green data (LSB) |
| 14 | G1 | Green data |
| 15 | G2 | Green data |
| 16 | G3 | Green data |
| 17 | G4 | Green data |
| 18 | G5 | Green data (MSB) |
| 19 | GND | Ground |
| 20 | B0 | Blue data (LSB) |
| 21 | B1 | Blue data |
| 22 | B2 | Blue data |
| 23 | B3 | Blue data |
| 24 | B4 | Blue data |
| 25 | B5 | Blue data (MSB) |
| 26 | GND | Ground |
| 27 | DE | Data Enable Signal |
| 28 | $V_{D D}$ | Power Supply |
| 29 | $V_{D D}$ | Power Supply |
| 30 | DIM | Normal Brightness: OV or 0\% PWM Duty Brightness Control: OV to 3.3 VDC or 0\% to 100\% PWM Duty |
| 31 | SD | Normal Scan: Low or open Reverse Scan: High |

The backlight connector (CN2) is SMO2 (8.0)B-BHS-1-TB (LF)(SN) made by JST, and pin assignment is as below:

| Pin No. | Symbol | Signal |
| :---: | :---: | :---: |
| 1 | V LED | 12VDC |
| 2 | GND | Ground |


| KAOHSIUNG OPTO-ELECTRONICS INC. | SHEET <br> NO. | 7B64PS 2709-TX17D01VM5BAA-3 | PAGE | $9-1 / 7$ |
| :--- | :---: | :---: | :---: | :--- |

### 9.2 TIMING CHART

A. SYNCHRONOUS MODE


Fig. 9.1 Horizontal Timing of Synchronous Mode
Note 1: CLK's falling edge is the time to latch data and count (thp + thb), therefore, data sending and Hsync's falling edge should start when CLK's rise edge.


Fig. 9.2 Vertical Timing of Synchronous Mode
Note 2: Vsync's falling edge needs to start with Hsync's falling edge simultaneously to count (tvp + tvb).
B. DE MODE


Fig. 9.3 Horizontal Timing of DE Mode


Fig. 9.4 Vertical Timing of DE Mode

| SHEET <br> NO. | 7B64PS 2709-TX17D01VM5BAA-3 | PAGE | $9-3 / 7$ |
| :---: | :---: | :---: | :---: |

## C. CLOCK AND DATA INPUT TIMING



Fig. 9.5 Setup \& Hold Time of Data and DE signal.


Fig. 9.6 Setup \& Hold Time of Hsync and Vsync signal.

### 9.3 TIME TABLE

The column of timing sets including minimum, typical, and maximum as below are based on the best optical performance, frame frequency (Vsync) $=60 \mathrm{~Hz}$ to define. If 60 Hz is not the aim to set, $54 \sim 66$ Hz for Vsync is recommended to apply for better performance by other parameter combination as the definitions in section 5.1.
A. SYNCHRONOUS MODE

| Item |  | Symbol | Min. | Typ. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hsync | CLK Frequency | fclk | 24.8 | 25.2 | 34.2 | M Hz |
|  | Display Data | thd | 640 | 640 | 640 | CLK |
|  | Cycle Time | th | 800 | 800 | 1000 |  |
|  | Pulse Width | thp | 1 | 2 | 10 |  |
|  | Pulse Width and Back Porch | thp + thb | 144 | 144 | 144 |  |
|  | Front Porch | thf | 16 | 16 | 216 |  |
| Vsync | Display Line | tvd | 480 | 480 | 480 | H |
|  | Cycle Time | tv | 516 | 525 | 570 |  |
|  | Pulse Width | tvp | 1 | 2 | 10 |  |
|  | Pulse Width and Back Porch | tvp + tvb | 35 | 35 | 35 |  |
|  | Front Porch | tvf | 1 | 10 | 55 |  |

B. DE MODE

| Item |  | Symbol | Min. | Typ. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Horizontal | CLK Frequency | fclk | 24.8 | 25.2 | 34.2 | M Hz |
|  | Display Data | thd | 640 | 640 | 640 | CLK |
|  | Cycle Time | th | 800 | 800 | 1000 |  |
| Vertical | Display Data | tvd | 480 | 480 | 480 | H |
|  | Cycle Time | tv | 516 | 525 | 570 |  |

C. CLOCK AND DATA INPUT TIMING

| Item |  | Symbol | Min. | Typ. | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CLK | Duty | Tcwh | 40 | 50 | 60 | \% |
|  | Cycle Time | Tcph | 29.23 | 39.68 | - | ns |
| Vsync | Setup Time | Tvsu | 8 | - | - |  |
|  | Hold Time | Tvhd | 8 | - | - |  |
| Hsync | Setup Time | Thsu | 8 | - | - |  |
|  | Hold Time | Thhd | 8 | - | - |  |
| Data | Setup Time | Tdsu | 8 | - | - |  |
|  | Hold Time | Tdhd | 8 | - | - |  |
| DE | Setup Time | Tesu | 8 | - | - |  |
|  | Hold Time | Tehd | 8 | - | - |  |

### 9.4 POWER SEQUENCE



Fig. 9.7 Power Sequence Timing
Note 1: In order to avoid any damages, $\mathrm{V}_{\mathrm{DD}}$ has to be applied before all other signals. The opposite is true for power Off where $V_{D D}$ has to be remained on until all other signals have been switch off. The recommended time period is 1 second. Hot plugging might cause display damage due to incorrect power sequence, please pay attention on interface connecting before power on.

Note 2: In order to avoid showing uncompleted patterns in transient state. It is recommended that switching the backlight on is delayed for 1 second after the signals have been applied. The opposite is true for power Off where the backlight has to be switched off 1 second before the signals are removed.

### 9.5 SCAN DIRECTION

Scan direction is available to be switched as below by setting CN1's SD pin.


Fig. 9.8 Normal Scan (SD: Low or Open)


Fig. 9.9 Reverse Scan (SD: High)

### 9.6 DATA INPUT for DISPLAY COLOR

|  | COLOR \& Gray Scale | Data Signal |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | R5 | R4 | R3 | R2 | R1 | R0 | G5 | G4 | G3 | G2 | G1 | G0 | B5 | B4 | B3 | B2 | B1 | B0 |
| Basic Color | Black | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | Red (0) | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | Green (0) | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | Blue (0) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
|  | Cyan | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
|  | Magenta | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
|  | Yellow | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | White | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| Red | Black | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | Red (62) | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | Red (61) | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : |
|  | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : |
|  | Red (1) | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | Red (0) | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Green | Black | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | Green (62) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | Green (61) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : |
|  | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : |
|  | Green (1) | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | Green (0) | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| Blue | Black | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | Blue (62) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
|  | Blue (61) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
|  | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : |
|  | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : |
|  | Blue (1) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 |
|  | Blue (0) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |


| KAOHSIUNG OPTO-ELECTRONICS INC. | SHEET <br> NO. | 7B64PS 2709-TX17D01VM5BAA-3 | PAGE | $9-7 / 7$ |
| :--- | :--- | :--- | :--- | :--- |

## 10. OUTLINE DIMENSIONS

10.1 FRONT VIEW



Note 1: General tolerance $\pm 0.5$

## 11. APPEARANCE STANDARD

The appearance inspection is performed in a dark room around 500~1000 lx based on the conditions as below:

- The distance between inspector's eyes and display is 30 cm .
- The viewing zone is defined with angle $\theta$ shown in Fig. 11.1 The inspection should be performed within $45^{\circ}$ when display is shut down. The inspection should be performed within $5^{\circ}$ when display is power on.


Fig. 11.1

### 11.1 THE DEFINITION OF LCD ZONE

LCD panel is divided into 3 areas as shown in Fig.11.2 for appearance specification in next section. A zone is the LCD active area (dot area); B zone is the area, which extended 1 mm out from LCD active area; $C$ zone is the area between $B$ zone and metal frame.

In terms of housing design, B zone is the recommended window area customers' housing should be located in.


Fig. 11.2

| KAOHSIUNG OPTO-ELECTRONICS INC. | SHEET <br> NO. | 7B64PS 2711-TX17D01VM5BAA-3 | PAGE | $11-1 / 3$ |
| :--- | :---: | :---: | :---: | :---: |

### 11.2 LCD APPEARANCE SPECIFICATION

The specification as below is defined as the amount of unexpected phenomenon or material in different zones of LCD panel. The definitions of length, width and average diameter using in the table are shown in Fig. 11.3 and Fig. 11.4.

| Item | Criteria |  |  |  |  | Applied zone |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Scratches | Length (mm) $\quad$ Wid | dth (mm) | Maximum n | ber | Minimum space | A, B |
|  | Ignored | $\bigcirc 0.02$ | Ignore |  | - |  |
|  | $\mathrm{L} \leqq 40$ 0.02 | <W $\leqq 0.04$ | 10 |  | - |  |
|  | $\mathrm{L} \leqq 20 \quad \mathrm{~W}$ | $\leqq 0.04$ | 10 |  | - |  |
| Dent | Serious one is not allowed |  |  |  |  | A |
| Wrinkles in polarizer | Serious one is not allowed |  |  |  |  | A |
| Bubbles on polarizer | Average diameter (mm) |  | Maximum number |  |  | A |
|  | $\mathrm{D} \leqq 0.3$ |  | Ignored |  |  |  |
|  | $0.3<\mathrm{D} \leqq 0.5$ |  | 12 |  |  |  |
|  | $0.5<$ D |  | 3 |  |  |  |
| 1) Stains <br> 2) Foreign Materials <br> 3) Dark Spot | Filamentous (Line shape) |  |  |  |  | A, B |
|  | Length (mm) | Width (mm) |  | Maximum number |  |  |
|  | $\mathrm{L} \leqq 2.0$ | $\mathrm{W} \leqq 0.03$ |  | Ignored |  |  |
|  | $\mathrm{L} \leqq 3.0$ | $0.03<\mathrm{W} \leqq 0.05$ |  | 10 |  |  |
|  | $\mathrm{L} \leqq 2.5$ | $0.05<\mathrm{W} \leqq 0.1$ |  | 1 |  |  |
|  | Round (Dot shape) |  |  |  |  | A, B |
|  | Average diameter (mm) | Maximum number |  | Minimum Space |  |  |
|  | $\mathrm{D}<0.2$ | Ignored |  | - |  |  |
|  | $0.2 \leqq$ D $<0.3$ | 10 |  | 10 mm |  |  |
|  | $0.3 \leqq$ D $<0.4$ | 5 |  | 30 mm |  |  |
|  | $0.4 \leqq$ D | None |  | - |  |  |
|  | In total | Filamentous + Round=10 |  |  |  |  |
|  | Those wiped out easily are acceptable |  |  |  |  |  |
| Dot-Defect <br> (Note 1) |  |  |  | Max | mum number | A |
|  | Bright dot-defect |  | ot |  | 4 |  |
|  |  | 2 adja | ent dot |  | 1 |  |
|  |  | 3 adjacent | ot or above |  | ot allowed |  |
|  |  |  |  |  | 5 |  |
|  | Dark dot-defect |  |  |  | 5 |  |
|  |  | 2 adj | ent dot |  | 2 |  |
|  |  | 3 adjacent | ot or above |  | ot allowed |  |
|  |  |  |  |  | 5 |  |
|  | In total |  |  |  | 10 |  |



Fig. 11.3


Average diameter $=\frac{a+b}{2}$

| KAOHSIUNG OPTO-ELECTRONICS INC. | SHEET <br> NO. | 7B64PS 2711-TX17D01VM5BAA-3 | PAGE | 11-2/3 |
| :--- | :---: | :---: | :---: | :---: |

Note 1: The definitions of dot defect are as below:

- The defect area of the dot must be bigger than half of a dot.
- For bright dot-defect, showing black pattern, the dot's brightness must be over 30\% brighter than others.
- For dark dot-defect, showing white pattern, the dot's brightness must be under 70\% darker than others.
- The definition of 1-dot-defect is the defect-dot, which is isolated and no adjacent defect-dot.
- The definition of adjacent dot is shown as Fig. 11.5.


The dots colored gray are adjacent to defect-dot A.

Fig. 11.5

## 12. PRECAUTIONS

### 12.1 PRECAUTIONS of ESD

1) Before handling the display, please ensure your body has been connected to ground to avoid any damages by ESD. Also, do not touch display's interface directly when assembling.
2) Please remove the protection film very slowly before turning on the display to avoid generating ESD.

### 12.2 PRECAUTIONS of HANDLING

1) In order to keep the appearance of display in good condition, please do not rub any surfaces of the displays by using sharp tools harder than 3 H , especially touch panel, metal frame and polarizer.
2) Please do not stack the displays as this may damage the surface. In order to avoid any injuries, please avoid touching the edge of the glass or metal frame and wore gloves during handling.
3) Touching the polarizer or terminal pins with bare hand should be avoided to prevent staining and poor electrical contact.
4) Do not use any harmful chemicals such as acetone, toluene, and isopropyl alcohol to clean display's surfaces.
5) Please use soft cloth or absorbent cotton with ethanol to clean the display by gently wiping. Moreover, when wiping the display, please wipe it by horizontal or vertical direction instead of circling to prevent leaving scars on the display's surface, especially polarizer.
6) Please wipe any unknown liquids immediately such as saliva, water or dew on the display to avoid color fading or any permanent damages.
7) Maximum pressure to the surface of the display must be less than $1.96 \times 10^{4} \mathrm{~Pa}$. If the area of applied pressure is less than $1 \mathrm{~cm}^{2}$, the maximum pressure must be less than 1.96 N .

### 12.3 PRECAUTIONS OF OPERATING

1) Please input signals and voltages to the displays according to the values defined in the section of electrical characteristics to obtain the best performance. Any voltages over than absolute maximum rating will cause permanent damages to this display. Also, any timing of the signals out of this specification would cause unexpected performance.
2) When the display is operating at significant low temperature, the response time will be slower than it at $25 \mathrm{C}^{\circ}$. In high temperature, the color will be slightly dark and blue compared to original pattern. However, these are temperature-related phenomenon of LCD and it will not cause permanent damages to the display when used within the operating temperature.
3) The use of screen saver or sleep mode is recommended when static images are likely for long periods of time. This is to avoid the possibility of image sticking.
4) Spike noise can cause malfunction of the circuit. The recommended limitation of spike noise is no bigger than $\pm 100 \mathrm{mV}$.

### 12.4 PRECAUTIONS of STORAGE

If the displays are going to be stored for years, please be aware the following notices.

1) Please store the displays in a dark room to avoid any damages from sunlight and other sources of UV light.
2) The recommended long term storage temperature is between $10^{\circ} \mathrm{C} \sim 35^{\circ} \mathrm{C}$ and $55 \% \sim 75 \%$ humidity to avoid causing bubbles between polarizer and LCD glasses, and polarizer peeling from LCD glasses.
3) It would be better to keep the displays in the container, which is shipped from KOE, and do not unpack it.
4) Please do not stick any labels on the display surface for a long time, especially on the polarizer.

## 13. DESIGNATION of LOT MARK

1) The lot mark is showing in Fig.13.1. First 4 digits are used to represent production lot, T represented made in Taiwan, and the last 6 digits are the serial number.


Fig. 13.1
2) The tables as below are showing what the first 4 digits of lot mark are shorted for.

| Year | Lot Mark |
| :---: | :---: |
| 2017 | 7 |
| 2018 | 8 |
| 2019 | 9 |
| 2020 | 0 |
| 2021 | 1 |


| Month | Lot Mark | Month | Lot Mark |
| :---: | :---: | :---: | :---: |
| Jan. | 01 | Jul. | 07 |
| Feb. | 02 | Aug. | 08 |
| Mar. | 03 | Sep. | 09 |
| Apr. | 04 | Oct. | 10 |
| May | 05 | Nov. | 11 |
| Jun. | 06 | Dec. | 12 |


| Week | Lot Mark |
| :---: | :---: |
| 1~7 days | 1 |
| $8 \sim 14$ days | 2 |
| $15 \sim 21$ days | 3 |
| $22 \sim 28$ days | 4 |
| $29 \sim 31$ days | 5 |

3) Except letters I and O, revision number will be shown on lot mark and following letters A to Z.

| REV.No | ITEM | REMARKS |
| :---: | :---: | :---: |
| A | - | - |
| B | LCD source changed | PCN 0976 |
| C | Color filter changed | PCN 0998 |

4) The location of the lot mark is on the back of the display shown in Fig. 13.2.

## Label example:



Fig. 13.2
SHEET
NO.

