L306 Hardware Design #### **GSM/WCDMA Module Series** Version: V1.8 **Date**: 2018-03-06 #### **Notice** Some features of the product and its accessories described herein rely on the software installed, capacities and settings of local network, and therefore may not be activated or may be limited by local network operators or network service providers. Thus, the descriptions herein may not exactly match the product or its accessories which you purchase. Shanghai Mobiletek Communication Ltd reserves the right to change or modify any information or specifications contained in this manual without prior notice and without any liability. #### Copyright This document contains proprietary technical information which is the property of Shanghai Mobiletek Communication Ltd. copying of this document and giving it to others and the using or communication of the contents thereof, are forbidden without express authority. Offenders are liable to the payment of damages. All rights reserved in the event of grant of patent or the registration of a utility model or design. All specification supplied herein are subject to change without notice at any time. #### **DISCLAIMER** ALL CONTENTS OF THIS MANUAL ARE PROVIDED "AS IS". EXCEPT AS REQUIRED BY APPLICABLE LAWS, NO WARRANTIES OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDINGBUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE MADE IN RELATION TO THE ACCURACY, RELIABILITY OR CONTENTS OF THIS MANUAL.TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT SHALL SHANGHAI MOBILETEKCOMMUNICATION LTD BE LIABLE FOR ANY SPECIAL, INCIDENTAL, INDIRECT, OR CONSEQUENTIAL DAMAGES, OR LOSS OF PROFITS, BUSINESS, REVENUE, DATA, GOODWILL SAVINGS OR ANTICIPATED SAVINGS REGARDLESS OF WHETHER SUCH LOSSES ARE FORSEEABLE OR NOT. # **Version History** | Date | Version | Modify records | Author | |------------|---------|--|---------------| | 2016-07-06 | V1.0 | First Release | Rc.dong,Lb.xu | | 2016-07-29 | V1.1 | Modify HSPA Description | Lb.xu | | 2016-08-05 | V1.2 | Modify Band Support Description | Lb.xu | | 2016-11-10 | V1.3 | Modify error | Rc.dong | | 2017-03-15 | V1.4 | Replace Figure 3-6 and Figure 3-9,update Log, update the boot circuit | Rc.dong | | 2017-06-25 | V1.5 | Modify chapter "storage and production"; add the PIN definition of the L306G; Add description of L306G, Delete L306M/H information. Add description of the Ring signal | Rc.dong,Lb.xu | | 2017-07-14 | V1.6 | Adjust the direction of the module package | Rc.dong | | 2017-10-10 | V1.7 | Modify chapter "storage and production"; add label description; delete SD card and SPI, update Log | Rc.dong | | 2018-03-06 | V1.8 | Add differences between L306E/A and L306G; modify description of the PIN59 and PIN82; update Figure 3-9 and Figure 3-10 | Rc.dong | | | | Y | | ## CONTENT | 1. Introduction | 5 | |---------------------------------------|----| | 1.1 Hardware Diagram | 5 | | 1.2 Main features | | | 1.3 Specifications | | | 1.4 Interfaces | | | Package Information | | | - | | | 2.1 Pin Configuration | | | 2.2 Pin definition | | | 2.3 Package Information | | | 2.3.1 Dimensions | | | 2.3.2 Product labeling | | | 2.3.3 Module size | | | 2.3.4 Recommend Pad | | | Interface Circuit Design | 20 | | 3.1 Power Section | 20 | | 3.1.1 Power Supply | | | 3.1.2 Power pin description | | | 3.1.3 Hardware Power On/Off | 21 | | 3.1.4 Hardware reset | 22 | | 3.2 USIM Interface | 23 | | 3.2.1 Pin Description | 23 | | 3.2.2 USIM application | 23 | | 3.3 USB Interface | | | 3.4 PCM Interface | | | 3.5 IIC Interface | | | 3.6 UART Interface | | | 3.6.1 Pin Description | 27 | | 3.6.2 UART application | 28 | | 3.7 Interactive Application Interface | 29 | | 3.8 LED Interface | 29 | | 3.8.1 LED Control circuit | 29 | | 3.8.2 LED State description | 30 | | 4. Electrical characteristics | 32 | | 4.1 Electrical characteristics | | | 4.2 Temperature characteristic | | | 4.3 Absolute Maximum Power | | | 4.4 Recommended operating conditions | | | 4.5 Power consumption | | | 4.6 Power Sequence | | | T.O I OWEL DEQUELIDE | ວວ | | | 4.7 Digital Interface Characteristics | 35 | |----|--|----| | | 4.8 ESD | | | | RF Features | | | Э. | RF Features | so | | | 5.1 Frequency Band | 38 | | | 5.2 Data link | 39 | | | 5.3 Antenna Design | 40 | | 6. | | | | | 6.1 Storage | | | | 6.2 Production | 44 | | | 6.2.1 Module confirmation and moisture | | | | 6.2.2 SMT reflow attentions | 46 | | | 6.2.3 SMT stencil design and the problem of less tin soldering | 47 | | | 6.2.4 SMT attentions | | | | | | ## 1. Introduction L306 is a small UMTS/HSPA+ module for LCC package, with stable and reliable performance. It supports UMTS/HSDPA/HSUPA900(850)/2100(1900) and can be completely compatible with existing GSM/GPRS/EDGE networks. ## 1.1 Hardware Diagram Figure 1-1 L306 functional architecture ## 1.2 Main features CPU ARM Cortex-R4@481MHz #### Flash RAM: 512Mb LPDDR1, 200 MHZ Flash: 1Gb NAND #### L306 series frequency bands | Standard | Frequency | L306E | L306A | L306G | |----------|--------------|-------|----------|-------| | | GSM850 MHZ | • | • | • | | GSM | EGSM900 MHZ | • | • | / • \ | | GSW | DCS1800 MHZ | | • (| • | | | PCS1900 MHZ | Con | • | •// | | | UMTS850 MHZ | | • | • | | | UMTS900 MHZ | • | | • | | WCDMA | UMTS1732 MHZ | | \ | • | | | UMTS1900 MHZ | | / • | • | | | UMTS2100 MHZ | • | | • | | HSPA | HSDPA | • | • | • | | | HSUPA | • | • | • | ## 1.3 Specifications • Supply Voltage Range: 3.3~4.2V (type3.8V) • Dimensions: 30mm * 30mm * 2.65mm • Package: 94-pin LCC Operation Temperature Range: -40 °C ~+85 °C Storage Temperature Range: -45℃~+90℃ Antenna: Main Antenna Diversity Antenna • Weight : Approx 5g #### 1.4 Interfaces • IIC PCM: Digital audio interface SIM: Support 1.8V/3V UART: High speed UART • USB 2.0: High Speed ,480Mbps ## 2. Package Information ## 2.1 Pin Configuration Figure 2-1 L306 Pin View ## 2.2 Pin definition Table 2-1 Differences Between L306E/A and L306G | Pin
NO. | Pin name | Туре | L306E/A | L306G | |------------|----------|------|-----------|-----------| | 59 | ANT1 | ANT | Main _ANT | NC | | 82 | ANT2 | ANT | MIMO_ANT | Main _ANT | Table 2-2 L306E/A/G Pin description | Pin
NO. | Pin name | Туре | Function Description | Power domain | State (1) | |------------|----------|------|---------------------------------|--------------|-----------| | 1. | GND | G | Ground | | GND | | 2. | GND | G | Ground | | GND | | 3. | PWRKEY | | Powerkey button | 0~4.2V | Open | | 4. | SYSRSTB | 1 | System reset signal | DVDD18 | Open | | 5. | GND | G | Ground | | GND | | 6. | GPIO47 | 1/0 | General input/output PIN | DVDD18 | Open | | 7. | URXD1 | DI | UART1 RX | DVDD18 | Open | | 8. | UTXD1 | DO | UART1 TX | DVDD18 | Open | | 9. | GPIO50 | 1/0 | General input/output PIN | DVDD18 | Open | | 10. | GND | G | Ground | | GND | | 11. | NC | | NC | | | | 12. | USB_DM | DIO | USB port differential data line | | Open | | 13. | USB_DP | DIO | OOD port differential data life | | Open | | 14. | GND | G | Ground | | GND | | 15. | VIO18 | Р | 1.8V output voltage | 1.8V | Open | | 16. | LPRDB | I/O | USB download key (Reserve) | DVDD18 | Open | | 17. | USIM_DATA | I/O | USIM data | DVDD18 | Open | |-----|------------|-----|--------------------------|-----------|------| | 18. | USIM_RESET | 0 | USIM reset | DVDD18 | Open | | 19. | USIM_CLK | 0 | USIM clock | DVDD18 | Open | | 20. | USIM_VCC | Р | USIM output voltage | 1.8/3.0V | Open | | 21. | NC | | NC | | | | 22. | NC | | NC | | | | 23. | NC | | NC | | | | 24. | NC | | NC | | | | 25. | NC | | NC | | | | 26. | NC | | NC | | | | 27. | GPIO39 | I/O | General input/output PIN | DVDD18 | Open | | 28. | NC | | NC | | | | 29. | GPIO30 | I/O | General input/output PIN | DVDD18 | Open | | 30. | NC | | NC | | | | 31. | NC | | NC | | | | 32. | NC | | NC | | | | 33. | NC | | NC | | | | 34. | NC | | NC | | | | 35. | NC | | NC | | | | 36. | NC | | NC | | | | 37. | GND | G | Ground | | GND | | 38. | VBAT | P | Power supply | 3.3∼4.2V | VBAT | | 39. | VBAT | | ι σωσι σαρριγ | 5.5 4.2 V | VBAT | | 40. | GND | G | Ground | | GND | | 41. | GND | G | Ground | | GND | | 42. | NC | | NC | | | | 43. | GND | G | Ground | | | | GND | |-----|---------------------|----------|------------------------------|---|--------------|--------|-------| | 44. | NC | | NC | | | | | | 45. | GPIO17 | I/O | General input/used as LED of | output PIN. It control | an be | DVDD18 | Open | | 46. | NC | | NC | | | | | | 47. | NC | | NC | | | | | | 48. | GPIO53 | I/O | General input/ | output PIN | | DVDD18 | Open | | 49. | STATUS/GPI
O51 | 0 | Output PIN indicating of m | as operatino
nodule | g status | DVDD18 | Open | | 50. | WAKE UP
/GPIO0 | I/O | | e module into sl
nodule from sle | | DVDD18 | Open | | 51. | NETLIGHT/G
PIO54 | 0 | Output PIN as status | LED control fo | r network | DVDD18 | Open | | 52. | GPIO46 | I/O | General input/ | output PIN | | DVDD18 | Open | | 53. | GPIO52 | 1/0 | General input/ | output PIN | | DVDD18 | Open | | 54. | GPIO28 | I/O | General input/ | output PIN | 1 | DVDD18 | Open | | 55. | GPIO44 | I/O | | General input/output PIN. It can be used as IIC clock | | DVDD18 | Open | | 56. | GPIO49 | I/O | General input/used as IIC da | output PIN. It c | an be | DVDD18 | Open | | 57. | GND | G | Ground | | | | GND | | 58. | GND | G | Ground | Y | | | GND | | | | | Pin number | L306E/A | L306G | | | | 59. | ANT1 | ANT | Pin59 | Main_ANT | NC | | Open | | | | | Pin82 | MIMO_ANT | Main_A
NT | | open. | | 60. | GND | G | Ground | Ground | | | GND | | 61. | GND | G | Ground | | | GND | | | 62. | VBAT | D | | | 2.2 4.01/ | VBAT | | | 63. | VBAT | Р | Power supply | | 3.3~4.2V | VBAT | | | 64. | GND | G | Ground | Ground | | | GND | | 65. | GND | G | Ground | | | | GND | | 66. | UARTO_RTS | DI | UART0 ready to receive D | VDD18 | Open | |-----|------------|-----|-----------------------------------|-------|------| | 67. | UARTO_CTS | DO | UART0 clear to send D | VDD18 | Open | | 68. | UARTO_RX | DI | UART0 receive data input D | VDD18 | Open | | 69. | UARTO_RING | DO | UART0 ring indicator D | VDD18 | Open | | 70. | UARTO_DCD | DO | UART0 data carrier detect D | VDD18 | Open | | 71. | UART0_TX | DO | UART0 transmit output D | VDD18 | Open | | 72. | UART0_DTR | DI | UART0 Data terminal ready | VDD18 | Open | | 73. | PCM_DOUT | I/O | PCM I/F data out D | VDD18 | Open | | 74. | PCM_DIN | I/O | PCM I/F data in D | VDD18 | Open | | 75. | PCM_SYNC | I/O | PCM interface sync D | VDD18 | Open | | 76. | PCM_CLK | I/O | PCM interface clock | VDD18 | Open | | 77. | GND | G | Ground | | GND | | 78. | GND | G | Ground | | GND | | 79. | NC | | NC | | | | 80. | GND | G | Ground | | GND | | 81. | GND | G | Ground | | GND | | | | | Pin number L306E/A L306G | | | | 82. | ANT2 | ANT | Pin59 Main_ANT NC Main_A Main_A | | Open | | | | | Pin82 MIMO_ANT NT | | | | 83. | GND | G | Ground | | GND | | 84. | GND | G | Ground | | GND | | 85. | GND | G | Ground | | GND | | 86. | GND | G | Ground | | GND | | 87. | GND | G | Ground | | GND | | | | | Ground | | | | 88. | GND | G | Ground | | GND | | 90. | GND | G | Ground | GND | |-----|-----|---|--------|-----| | 91. | GND | G | Ground | GND | | 92. | GND | G | Ground | GND | | 93. | GND | G | Ground | GND | | 94. | GND | G | Ground | GND | (1) Suggested status when not in use. Notes: Module provides all IO ports need to be out of floating in the boot process. If the IO is pulled up by the external voltage before booting, it may cause the module to not start normally. Table 2-3 Pin type description | P:POWER | G:GROUND | |----------------|--------------------------| | I:INPUT | DI:DIGITAL INPUT | | O:OUTPUT | DO:DIGITAL OUTPUT | | ANT:ANTENNA | DIO:DIGITAL INPUT OUTPUT | | NC:NOT CONNECT | | ## 2.3 Package Information #### 2.3.1 Dimensions The L306 mechanical dimensions are described as following figure (Top view, Back view, Side view). Figure 2-2 Mechanical Dimensions #### 2.3.2 Product labeling ## Figure 2-3 Label of L306 Table 2-4 Description of label | Item | Description | |------|---| | Α | Logo of company | | В | PID number | | С | Environment-friendly use period | | D | QR codeinclude IMEI number | | Е | IMEI number | | F | SN number | | G | CE | | Н | Pin1 mark | | I | Module name | | J | Module configuration, * stands for E, A or G (refer to table 2-1 and table 2-2) | | K | WEEE | | L | QR codeinclude SN number | | M | CCC | | N | RoHS | #### 2.3.3 Module size Figure 2-4 Module Size (back view) #### 2.3.4 Recommend Pad Figure 2-5 Recommend pad(front view) ## 3. Interface Circuit Design #### 3.1 Power Section #### 3.1.1 Power Supply VBAT is the main power supply of the module, and the input voltage range is 3.3V to 4.2V. The recommended voltage is 3.8V. Because the module transmit burst may cause voltage drops, the highest peak will reach 2A. A large capacitor voltage is recommended to use near VBAT pins, and the capacitor's value is the bigger the better. In order to improve the continued flow of large current, it is recommended to use a low-impedance tantalum 470uF or larger. During layout, the capacitors are close to the VBAT pins. Figure 3-1 Power Supply circuit Notes: According to the environment, please select capacitor as large value as possible; and add 100pF, 33pF capacitors if requiring. Add Zener close to our module. The Zener should be 5.1V/500mW, Ir<100uA @Vr=4.2V. Ta=25 $^{\circ}$ C. #### 3.1.2 Power pin description | Pin number | Pin name | Description | |---|----------|-----------------| | 38/39/62/63 | VBAT | positive signal | | 1/2/5/10/14/37/40/41/43/57/58/60/64/65
77/78/80/81 | GND | GND | | 83/84/85/86/87/88/89/90/91/92/93/94 | GND | GND | The Ground of power and signal need to be GND signal connection is not complete will have an impact on the performance of the product. In addition, there are a total of 12 (83~94) heat sink and fixed pad. #### 3.1.3 Hardware Power On/Off Module third pin is the Power on/off key. Pulling down the PWRKEY continuously, the module will boot. Releasing the PWRKEY, the module will shutdown. There is internally pulled-up resistor. If using the power on the boot form, and the PWRKEY is grounded directly. If you do not need to power on the boot, you can control the PWRKEY to achieve. Typical circuit is shown in figure 3-2. Figure 3-2 Control module boot circuit #### 3.1.4 Hardware reset Module fourth pin is the hardware reset input. The module will power off when it receives a 20ms low level signal. The system has an internal pull up, the typical value is 1.8V, and do not need to pull up externally. Figure 3-3 System Reset #### 3.2 USIM Interface #### 3.2.1 Pin Description L306 supports and be able to automatically detect 3.0V and 1.8V USIM card. USIM card interface signal as shown in table 3-1. Table 3-1 (U)SIM Pin Description | Pin NO. | Pin Name | Signal definition | Function Description | |---------|------------|---------------------|----------------------------------------------| | 17 | USIM_DATA | USIM card data pin | USIM card DATA signal, I/O signal | | 18 | USIM_Reset | USIM card reset pin | USIM card reset signal, output by the module | | 19 | USIM_CLK | USIM card clock pin | USIM card clock signal, output by the module | | 20 | USIM_VCC | USIM output voltage | USIM card power supply, output by the module | #### 3.2.2 USIM application USIM card signal group (PIN number: 17, 18, 19, 20), near the USIM card seat on the line. Please note to increase the ESD protection device. In order to meet the requirements of 3GPP TS 51.010-1 protocol and EMC certification, the proposed USIM card is arranged near the position module USIM card interface, and avoid to layout too long resulting in serious waveform distortion, affecting the signal integrity. USIM_CLK and USIM_DATA signals are recommended to be protected. Between GND and USIM_VCC in parallel with a 1uF and 33pF capacitors, that can filter out the interference of radio frequency signals. Figure 3-4 (U)SIM Circuit #### 3.3 USB Interface #### **USB** application The USB interface of the module conforms to the USB2.0 specification and electrical characteristics. Support the low-speed, full-speed and high-speed three operating modes. The data exchange between the main processor (AP) and the module is mainly completed through the USB interface. USB bus is mainly used for data transmission, software upgrade, module program testing. Working in the USB mode of the high-speed line, if you need ESD design, ESD protection devices must meet the junction capacitance value of <3pf, otherwise the larger junction capacitance will cause waveform distortion, and affect the bus communication. The differential impedance of differential data lines should be controlled at 90ohm ±10%, and lines should be protected up and down, and can't be crossed with other lines. USB connection circuit is as follows. Figure 3-6 USB Circuit Note: If you use the serial port communication, the DM/DP reserved test points respectively in order to download software. If DM/DP is used to communicate with the MCU, the position of the DM / DP signal near the module needs to reserve a test point and the DM/DP requires a series 0R resistor. The resistor is placed near the module and the test point is placed between module and resistor. #### 3.4 PCM Interface #### **PCM** application L306 provides a digital audio interface (PCM) that can be used as a PCM master device to transmit digital voice signals. L306 only acts as a master device. PCM sync, PCM CLK are as output pins and PCM sync output 16kHz synchronization signals, the PCM data support 8-bit or 16 bit data format. We recommended codec chip is NAU8814YG. The codec chip crystal default use 1.8V power supply, 12M output active crystal. The power control pin of the PCM uses the PIN45 by default. And NAU8814YG connected circuit from the device is shown in figure 3-7. Figure 3-7 NAU8814YG peripheral Circuit (L306 as Main device) #### 3.5 IIC Interface L306 module does not have a dedicated IIC interface. if you need to use the IIC interface for communication, you should use the GPIO port to simulate the IIC interface, and it is recommended to use an external pull-up resistor of 4.7K by VIO18. #### 3.6 UART Interface #### 3.6.1 Pin Description The module L306 provides two UART serial communication interfaces: the UART1 is as the end of the AP module debug port, 2-wire UART interface; UART0 can be debug port and also can be as complete non-synchronous communication interface, supporting standard modem handshake signal control and in compliance with the RS-232 interface protocol, also supporting 4-wire serial bus interface or 2-wire serial bus interface mode. The module can communicate AT commands by UART interfaces. The two groups of UART port support programmable data width, stop bits, and parity bits, with separate TX and Rx FIFOs (512 bytes each). The max baud rate of normal application of UART (non-Bluetooth) is 115200bps. The default baud rate is 115200bps. Table 3-2 UART Pin Description | Pin NO. | Pin Name | I/O | Function Description | | | |---------|------------|-----|-----------------------------------------------------------------------------|--|--| | 7 | URXD1 | DI | UART1 receive data input only for debugging | | | | 8 | UTXD1 | DO | UART1 transmit output only for debugging | | | | 66 | UARTO_RTS | DI | UART0 Ready to receive | | | | 67 | UARTO_CTS | DO | UART0 Clear to Send | | | | 68 | UARTO_RX | DI | UART0 receive data input | | | | 69 | UART0_RING | DO | UARTO Ring Indicator. It can be used as wake out signal to host from module | | | | 70 | UART0_DCD | DO | UART0 Data Carrier Detect | | | | 71 | UART0_TX | DO | UART0 transmit data output | | | | 72 | UART0_DTR | DI | Data Terminal Ready(wake up module) | | | #### 3.6.2 UART application UART0 and UART1 can be used for software debugging process. We suggest that the users retain this interface and set aside the test point. If used in communication between the module and application processor, and the level is 1.8V, the connection mode is shown in Figure 3-9 and figure 3-10. You can use the complete RS232 mode, 4 wires or 2 wires mode connection. Module interface level is 1.8V. If the AP interface level does not match, you must increase the level conversion circuit. Figure 3-9 Connect to AP method(4lines) Figure 3-10 Connect to AP method Notes: Serial communication, the module can enter the sleep; USB communication, the module can't enter the sleep, unplug the USB, the module can enter the sleep. ## 3.7 Interactive Application Interface #### **Pin Description** Table 3-3 Interactive application interface | Pin NO. | Pin name | 1/0 | Function Description | |---------|-----------------|-----|-------------------------------------------------------------------------------------------------------------| | 51 | NETLIGHT/GPIO54 | 0 | Output PIN as LED control for network status. If it is unused, left open | | 49 | STATUS/GPIO51 | 0 | Output PIN as operating status indicating of module. H: Power on L: Power off. If it is unused, left open | | 50 | WAKE UP /GPIO0 | 1/0 | General input/output Port. It can be used as wake up signal to module from host. If it is unused, left open | Note: If need to use more GPIO ports, you can refer to table 2-1; User can read and write GPIO port state through the AT command. ## 3.8 LED Interface #### 3.8.1 LED Control circuit GPIO54 (PIN51) can be used to control the network status of the lam; GPIO17 (PIN45) can be used as an indicator of the power supply connected or not. Figure 3-11 LED Circuit ## 3.8.2 LED State description GPIO17 is used as the enable pin. Table 3-4 lists the LED status. Table 3-4 LED Status | LED Status | Module Status | |------------|---------------| | Always On | Power on | | OFF | Power off | GPIO54 is used as the enable pin. Table 3-5 lists the LED status. Table 3-5 LED Status | Always On | Searching Network/Call Connect | |---------------------|--------------------------------| | 300ms ON, 300ms OFF | Data Transmit | | 800ms ON, 800ms OFF | Registered network | | OFF | Power off / Sleep | ## 4. Electrical characteristics #### 4.1 Electrical characteristics Table 4-1 Electrical characteristics | Power | Min. | Nom. | Max | Unit | |--------------|------|------|-----|------| | VBAT | 3.3 | 3.8 | 4.2 | V | | Peak current | -0.3 | (-) | 2.0 | A | 0 Notes: The over-low voltage can't power on the module; Over-high voltage may be danger to damage the module. Using the DCDC supply, please ensure the capacity of DCDC over 2.0A. We don't suggest the LDO as the power supplier. ## 4.2 Temperature characteristic Table 4-2 Temperature characteristic | State | Min. | Nom. | Max | Unit | |---------|------|------|-----|------------------------------------------------------------------------------------| | Working | -40 | 25 | 85 | ${\mathbb C}$ | | Storage | -45 | 25 | 90 | $^{\circ}\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ | Note: When the temperature is over the range, the RF performance may be dropped. It also may cause power down or restart problem. #### 4.3 Absolute Maximum Power Table 4-3 Absolute maximum power rating | PIN Name | Description | Min. | Тур. | Max. | Unit | |----------|----------------------------|------|------|------|------| | DVDD18 | Digital power input for IO | 1.7 | 1.8 | 1.9 | V | ## 4.4 Recommended operating conditions Table 4-4 Recommended operating range | PIN Name | Description | Min. | Тур. | Max. | Unit | |----------|----------------------------|------|------|------|------| | DVDD18 | Digital power input for IO | 1.7 | 1.8 | 1.9 | V | Note: All the GPIOs of module are 1.8V. ## 4.5 Power consumption Table 4-5 Power Consumption | Parameter | Conditions | Min. | Average | Max. | Unit | |-----------|---------------------------|------|---------|------|------| | Standby | Flight mode Suspend state | - | 1.0 | | mA | | current | 2G only | - | 1.8 | | mA | |--------------|------------------------------|----|------------|-----|----| | | WCDMA only | - | 1.9 | | mA | | | USB+Fltght mode | - | 21.8 | | mA | | Working | GSM850,MAX Power | - | 248 / 232* | | mA | | | GSM900,MAX Power | - | 235/ 238* | | mA | | | DCS1800, MAX Power | - | 183/ 162* | | mA | | | PCS1900, MAX Power | - | 181/ 186* | | mA | | | WCDMA@CH3012,MAX Power | 9- | 393 / 490* | | mA | | | WCDMA@CH4408,MAX Power | - | 397 / 490* | | mA | | | WCDMA@CH1638,MAX Power | | / 487* | | mA | | | WCDMA@CH9800,MAX Power | | 450 / 475* | | mA | | | WCDMA@CH10700,MAX Power |)- | 378 / 482* | | mA | | Peak current | Max power mode burst current | | - | 2.0 | Α | ^{*} Power consumption of L306G. ## 4.6 Power Sequence Figure 4-1 Power up time sequence diagram ## 4.7 Digital Interface Characteristics Table 4-6 Digital IO Voltage | Parameter | Description | Min. | Typical | Max. | Unit | |-----------|---------------------------|------|---------|------|------| | VIH | High level input voltage | 1.62 | 1.8 | 1.98 | V | | VIL | Low level input voltage | 0 | - | 0.7 | V | | VOH | High level output voltage | 1.62 | 1.8 | 1.98 | V | | VOL | Low level output voltage | 0 | - | 0.3 | V | Note: Suit to all GPIO, IIC, UART interfaces. ## 4.8 **ESD** Because there is no special protection against electrostatic discharge in the module, it is necessary to pay attention to the protection of electrostatic protection in the production, assembly and operation module. The performance parameters of the module test are as follows. ESD parameter (Tem: 25℃, humidity: 45%) Table 4-7 ESD Performance | PIN Name | | Contact discharge | Air discharge | |----------|---|-------------------|---------------| | VBAT | | ±4KV | ±8KV | | GND | | ±4KV | ±8KV | | RF_ANT | 7 | ±4KV | ±8KV | Enhanced ESD performance method: - 1. If the customer to the adapter plate, the adapter plate anchor as much as possible, and the uniform distribution of conduction path width; - 2. Key (reset key) need to add ESD device; reset key to walk the line do not rely on the edge of the board: - 3. USB, UART and other plug connection need to add ESD devices, the other from the outside of the machine out of the control line also need to add ESD devices; - 4. SIM card, users will get inserted t-card touch the place also need to add ESD device; 5. External antenna, please add ESD device, ESD C_{pf} <0.5pF. Notes: For ESD protect, please add ESD methods according to upper ways. High speed circuits like USB, TF and SIM card should be added ESD with low capacity value. ESD components include varistors and TVS. For better performance, please use TVS. # 5. RF Features ## 5.1 Frequency Band L306 supports GSM Band 2/3/5/8 and WCDMA Band1(2)/Band8(5). Table 5-1 Frequency Bands | Frequency | Uplink | Downlink | |-----------|---------------------|---------------------| | GSM850 | 824 MHz — 849 MHz | 869 MHz — 894 MHz | | E-GSM900 | 880 MHz — 915 MHz | 925 MHz — 960 MHz | | DCS1800 | 1710 MHz — 1785 MHz | 1805 MHz — 1880 MHz | | PCS1900 | 1850 MHz — 1910 MHz | 1930 MHz — 1990 MHz | | UMTS2100 | 1920 MHz — 1980 MHz | 2110 MHz — 2170 MHz | | UMTS1900 | 1850 MHz — 1910 MHz | 1930 MHz — 1990 MHz | | UMTS1732 | 1710 MHz — 1755 MHz | 2110 MHz — 2155 MHz | | UMTS850 | 824 MHz — 849MHz | 869 MHz — 894 MHz | | UMTS900 | 880 MHz — 915 MHz | 925 MHz — 960 MHz | Table 5-2 Output power | Frequency | Max output power | Min output power | |---------------|------------------|------------------| | GSM850 | 33dBm ±2dB | 5dBm ±5dB | | E-GSM900 | 33dBm ±2dB | 5dBm ±5dB | | DCS1800 | 30dBm ±2dB | 0dBm ±5dB | | PCS1900 | 30dBm ±2dB | 0dBm ±5dB | | GSM850(8-PSK) | 27dBm ±3dB | 5dBm ±5dB | | E-GSM900(8-PSK) | 27dBm ±3dB | 5dBm ±5dB | |-----------------|---------------|-------------| | DCS1800(8-PSK) | 26dBm +3/-4dB | 0dBm ±5dB | | PCS1900(8-PSK) | 26dBm +3/-4dB | 0dBm ±5dB | | UMTS2100 | 24dBm +1/-3dB | -56dBm ±5dB | | UMTS1900 | 24dBm +1/-3dB | -56dBm ±5dB | | UMTS1732 | 24dBm +1/-3dB | -56dBm ±5dB | | UMTS850 | 24dBm +1/-3dB | -56dBm ±5dB | | UMTS900 | 24dBm +1/-3dB | -56dBm ±5dB | Table 5-3 Receive sensitivity | Frequency | Receive sensitivity | |-----------|---------------------| | GSM850 | <-109dBm | | E-GSM900 | <-109dBm | | DCS1800 | <-109dBm | | PCS1900 | <-109dBm | | UMTS2100 | <-109dBm | | UMTS1900 | <-109dBm | | UMTS1732 | <-109dBm | | UMTS850 | <-109dBm | | UMTS900 | <-109dBm | ## 5.2 Data link L306 supports GPRS/EDGE CLASS12, and HSDPA/HSDPA R8. The actual application depends on the local network operator. Table 5-4 Data Link | Version | Function | Max supported | Theoretical max peak rate | |-----------|----------|---------------|---------------------------| | L306 | GPRS | CS4 | 85.6kbps | | L306 | EDGE | MCS9 | 236.8kbps | | L306E/A/G | HSDPA | Cat10 | 14.4Mbps | | L306E/A/G | HSUPA | Cat6 | 5.76Mbps | ## 5.3 Antenna Design The access part of the RF antenna of this product supports the PAD form. The connection between the module and the main board antenna interface is required to be welded and connected through a microstrip line or a strip line. The microstrip line or strip line is designed according to the characteristic impedance of 50 ohm, and the length of the wire is less than 10mm. Reserved Π matching network ## Antenna efficiency Antenna efficiency is the ratio of the input power and radiant power. Because of the return loss, material loss and coupling loss of the antenna, the radiant power is always lower than the input power. The ratio is recommended to be controlled over 40%(-4dB). #### S11 or VSWR S11 indicates the matching level of the 50 Ohm impedance for the antenna. It affects the antenna efficiency in a certain extent. The VSWR testing method could be used for measuring purpose. The recommended value for S11 is less than -10dB. ## **Polarization** Polarization refers to the rotation direction of electric field while the antenna is in the direction of maximum radiation. Linear polarization is recommended. It is recommended to use the diversity antenna which has the different polarization direction from the main antenna. ## Radiation pattern L306 Hardware Design **∕**∿obileTek The radiation pattern refers to the intensity of the electromagnetic field while the antenna is in every direction of the far field. Dipole antenna is perfect as the terminal antenna. For built-in antenna, it is recommended to use PIFA or IFA antennas. Antenna dimension: 6mm*10mm*100mm (H*W*L). Antenna radiation direction: omnidirectional. Gain and directivity Antenna directivity refers to the intensity of the electromagnetic field while the electromagnetic wave is in all directions. Gain is the collection of the efficiency and directivity of the antenna. It is recommended that antenna gain is less than or equal to 3dBi. Interference In addition to antenna performance, some other interference from the PCB will also affect the module performance. To ensure the high performance of the module, the interference must be under control. Suggestions: keep speaker, LCD, CPU, FPC wire routing, audio circuits, and power supply away from the antenna, and add appropriate filtering and shielding protection, or adding filtering devices on the traces. TRP/TIS TRP(Total Radiated Power): GSM850/900 >28dBm GSM1800/1900 >25dBm WCDMA Band1/2/4/5/8 > 19dBm TIS(Total Isotropic Sensitivity): GSM850/900/1800/1900 <-102dBm WCDMA Band1/2/4/5/8 <-102dBm Copyright © Shanghai Mobiletek Communication Ltd 41 Figure 5-1 Main Antenna Design Figure R1, C1, C2 and R2 composition of the antenna matching network for antenna debugging, the default R1, R2 paste 0 ohm resistor C2, C1 empty paste, to be antenna factory after the antenna to determine the value of the antenna. Connector RF in the figure is used for testing and conducting test (for example, CE, FCC, etc.), which need to be placed as far as possible by the module, the RF path from the module to the antenna feed point should be kept 50 ohm impedance control. Figure 5-2 Div Antenna Design Figure R3, C3, C5 and R5 composition of the antenna matching network for antenna debugging, the default R3, R5 paste 0 ohm resistor C5, C3 empty paste, to be antenna factory after the antenna to determine the value of the antenna. Note: L306G do not support MIMO Antenna, which main antenna Pad is PIN82. # 6. Storage and Production ## 6.1 Storage The rank of moisture proof of the module is level 3. There is an obvious sign on the table of the internal and the external packaging. In the vacuum sealed bag, the module can be stored for 180 days when the temperature is below 40°C and the humidity is below 90% under good air circulation. Humidity level is descripted detail as follows: Table 6-1 Humidity level | Rank | Factory Environment ≦ +30°C /60%RH | | |------|------------------------------------------------------|--| | 1 | No controll < 30°C /85%RH | | | 2 | One year | | | 2a | 4 weeks | | | 3 | 168 hours | | | 4 | 72 hours | | | 5 | 48 hours | | | 5a | 24 hours | | | 6 | Baking before using, SMT during the time table signs | | Notes: Moving, storage, production of module must meet the demand of IPC/JEDEC J-STD-033. ## 6.2 Production The module is a humidity sensitive device. If the device needs reflow soldering, disassembly and maintenance, we must strictly comply with the requirements of humidity sensitive device. If module is damp, a reflow soldering or using a hot-air gun maintenance will lead to internal damage, because the water vapor has the rapid expansion of the burst, causing physical injury to the device, like PCB foaming and BGA component fail. So customers should refer to the following recommendations. #### 6.2.1 Module confirmation and moisture The module in the production and packaging process should be strictly accordance with the humidity sensitive device operation. The factory packaging is vacuum bag, desiccant, and humidity indicator card. Please pay attention to the moisture control before SMT and the confirmation of the following aspects. ## **Demand of Baking confirmation** Smart module uses vacuum sealed bag, which can make it stored for 6 months under the condition of temp 30°C and humidity < 60%. The module should be baked before reflowing soldering if any of the conditions below happen. - 1. Storage exceeds the time limit; - Package damages and vacuum bags have air leakage; - Humidity indicating card change the color at 10%; - 4. Module is placed naked in the air over 168 hours. - 5. Module is placed naked in the air under 168 hours but not temp 30°C and humidity < 60%. ## **Baking condition confirmation** The moisture proof level of the smart module is level 3. And the baking conditions are as follows. Table 6-2 Baking conditions | Baking conditions | 120°C/ 5%RH | 40°C/ 5%RH | |-------------------|---------------------------|---------------------------| | Baking time | 4 hours | 30days | | Description | not use the original tray | Can use the original tray | 0 Note: The original anti-ESD tray temperature does not exceed 50°C. Otherwise the tray will be deformed. The anti-ESD tray of the original packaging is only used for packaging, and can't be used as a SMT tray. During taking and placing, please take notes of ESD and cannot be placed as overlay. ## **Customer product maintenance** If maintenance module after SMT, it is easy for damp module to damage when removing, so the module disassembly and other related maintenance operations should complete within 48 hours after SMT, or need to bake and then maintenance the module. Because the module return from the field work can't ensure the dry state, it must be baked in accordance with the conditions of baking, then for disassembly and maintenance. If it has been exposed to the humid environment for a long time, please properly extend the baking time, such as 125°C /36 hours. ## 6.2.2 SMT reflow attentions The module has the BGA chips, chip resistances and capacitances internally, which will melt at high temperature. If module melt completely encountered a large shock, such as excessive vibration of reflux conveyor belt or hit the board, internal components will easily shift or be false welding. So, using intelligent modules over the furnace need to pay attention to: Modules can't be vibrate larger, namely customer requirements as far as possible in orbit (chain) furnace, furnace, avoid on the barbed wire furnace, in order to ensure smooth furnace. The highest temperature can't too high. In the condition that meet the welding quality of customer motherboard and module, the lower furnace temperature and the shorter maximum temperature time, the better. Some customer's temperature curve in the line is not suitable, high temperature is too high, and customer motherboard melt good, but non-performing rate is on the high side. Through the analysis of the causes, it found that melt again of BGA components lead device offset and short circuit. After adjusting the temperature curve, it can ensure that the customer's motherboard the welding quality, and also improve the pass through rate. Non-performing rate is controlled below the 2/10000. ## 6.2.3 SMT stencil design and the problem of less tin soldering Part of customers found false welding or circuit short when reflowing. The main reason is module tin less, PCB distortion or tins too large. Suggestions are as follows: - Suggest use ladder stencil, which means the depth of the region of module is thicker than other areas. Please adjust validation according to the measured thickness of solder paste, the actual company conditions and experience value. The products need to strictly test. - Stencil: Reference module package, and the user can adjust according to their company experience; Outside of the module, the stencil extends outside. The GND pads use the net stencil. #### 6.2.4 SMT attentions If customer motherboard is thin and slender with a furnace deformation, warping risks, you will be suggested to create "a furnace vehicle" to ensure the welding quality. Other production proposals are as follows: The solder pastes use brands like Alfa. - The module must use the SMT machine mount (important), and do not recommend manually placed or manual welding. - For SMT quality, Please ensure the necessary condition according to actual condition of factory before SMT, like SMT pressure, speed (very important), stencil ways. - We must use the reflow oven more than 8 temperature zones, and strictly control the furnace temperature curve. Recommended temperature: - B. constant temperature zone: temperature 160-190°C, time: 60s-100s. - E. recirculation zone: PEAK temperature 235-245°C, time over 220°C: 30s-60s. Note: customer's board deformation must be controlled well. By reducing the number of imposition or increasing patch clamp to reduce the deformation. Module thickness of the stencil is recommended to be thickened, and the rest position can be maintained by 0.1mm.