•

MODEL NO :	TM103XDG	201
MODEL VERSION:	00	
SPEC VERSION :	2.0	
ISSUED DATE:	2020-06-24	
	Specification ct Specification	

Customer :		
Α	pproved by	Notes

TIANMA Confirmed :

Prepared by	Checked by	Approved by
Bei Lei	Longping Deng	Minhong Kim

This technical specification is subjected to change without notice

Table of Contents

Cov	/ersheet	1
Red	cord of Revision	3
1.	General Specifications	4
2.	Input/Output Terminals	5
3	Absolute Maximum Ratings	. 10
4	Electrical Characteristics	. 11
5	Timing Characteristics	
6	Optical Characteristics	
7	Environmental / Reliability Tests	. 24
8	Mechanical Drawing	
9	Packing Drawing	
10	Precautions For Use of LCD modules	

Record of Revision

Rev	Issued Date	Description	Editor
2.0	2020-06-24	Final Specification Release.	Bei Lei
	19		

1. General Specifications

	Feature	Spec
	Size	10.25inch
	Resolution	1920(RGB) X 720
	Technology Type	a-Si
	Pixel Configuration	R.G.B. Vertical Stripe
Display Spec.	Pixel pitch(mm)	0.1269 x 0.1269
	Display Mode	Normally Black
	Surface Treatment	HC
	Viewing Direction	All
	Gray Scale Inversion Direction	N/A
	LCM (W x H x D) (mm)	262.04x110.30x8.4
	Active Area(mm)	243.65 x 91.37
Mechanical	With /Without TSP	Without TSP
Characteristics	Connection Type	LCM:JUSTCONN 101049-205050 BL:JUSTCONN 101049-201050
	LED Numbers	24LEDs
	Weight (g)	447
	Interface	LVDS 8-bit VESA
Electrical Characteristics	Color Depth	16.7M
	Driver IC	NT51625*3+NT52602*1

Note 1: Viewing direction for best image quality is different from TFT definition, there is a 180 degree shift.

Note 2: Requirements on Environmental Protection: Q/S0002

Note 3: LCM weight tolerance: ± 5%

Model No.TM103XDGP01

2 Input/Output Terminals

2.1 Pin assignment (TFT Interface)

Recommend connector: JUSTCONN 101049-205050

No	Symbol	I/O	Description	Remarks
1	GND	Р	Ground	
2	GND	Р	Ground	
3	GND	Р	Ground	
4	VDD	Р	Power supply for LCD. (VDD=3.3V)	
5	VDD	Р	Power supply for LCD. (VDD=3.3V)	
6	VDD	Р	Power supply for LCD. (VDD=3.3V)	
7	VDD	Р	Power supply for LCD. (VDD=3.3V)	
8	GND	Р	Ground	
9	NC(SDA)	Ν	Tianma internal used Custom must floating	
10	NC(SCL)	Ν	Tianma internal used Custom must floating	Note1
11	NC(CSB)	Ν	Tianma internal used Custom must floating	
12	GND	Р	Ground	
13	OLV0N	Ι	Odd LVDS data input 0-	
14	OLV0P	7_	Odd LVDS data input 0+	
15	GND	Р	Ground	
16	OLV1N		Odd LVDS data input 1-	
17	OLV1P	I.	Odd LVDS data input 1+	
18	GND	P	Ground	
19	OLV2N	Ι	Odd LVDS data input 2-	
20	OLV2P	Ι	Odd LVDS data input 1+	
21	GND	Р	Ground	
22	OLVCKN	I	Odd LVDS Clock input -	
23	OLVCKP	Ι	Odd LVDS Clock input +	
24	GND	Р	Ground	
25	OLV3N	I	Odd LVDS data input 3-	
26	OLV3P	I	Odd LVDS data input 3+	

			Model NO.1 M TOSADO	
27	GND	Р	Ground	
28	ELV0N	Ι	Even LVDS data input 0-	
29	ELV0P	I	Even LVDS data input 0+	
30	GND	Р	Ground	
31	ELV1N	Ι	Even LVDS data input 1-	
32	ELV1P	I	Even LVDS data input 1+	
33	GND	Р	Ground	Xv
34	ELV2N	I	Even LVDS data input 2-	
35	ELV2P	I	Even LVDS data input 2+	
36	GND	Р	Ground	
37	ELVCKN	Ι	Even LVDS Clock input -	
38	ELVCKP	Ι	Even LVDS Clock input +	
39	GND	Р	Ground	
40	ELV3N	I	Even LVDS data input 3-	
41	ELV3P	Ι	Even LVDS data input 3+	
42	GND	Ρ	Ground	
43	RESET	I	Global reset pin, active low	
44	STBYB	I	Standby mode setting pin, active low	
45	SHLR	-	Horizontal shift direction(source output)selection	Note 2
46	UPDN		Vertical shift direction(gate output)selection	Note 2
47	Fail_T	0	Output for fail detection	Note 3
48	GND	P	Ground	
49	NC	N	No connect	
50	NC(VDD_OTP)	Ν	Tianma internal used Custom must floating	Note1
			5	

I/O definition:

I----Input O----Output

I/O----Input/Output P----Power/Ground N-No Connect

Note 1: Custom must floating

Note 2: SHLR and UPDN controlde by customer

SHLR=H, UPDN=H

	4N	MA	7
10			

	АМИАІТ	
1		

SHLR=L, UPDN=H

AN	N	AIT	
1			

Note 3: Fail_T: normally pull L in IC, active "H"(when Hsync or Vsync or Clk miss, this pin will pull "H")

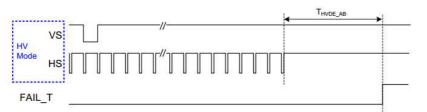
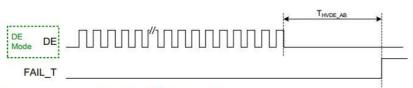



Figure 5. HV Mode AB_IND operation

Figure 6. DE Mode AB_IND Operation

Note: For 1920RGBx720 resolution, T_{HVDS_AB} ~= 10.7ms for DE and HS detection~60ms for VS detection.

The Clock Error Detection function monitors the Clock signal, if the clock pulse stopped longer than the criterion, AB_IND will output High for error indication.

		<u> </u>
FAIL_T		
Figure 7.	Clock Error AB_IND Operation	

Note: For 1920RGBx720 resolution, $T_{CLK_AB} \sim= 234 us$

When CLK lost, Tsp_det is about 234us.

When DE/HS lost, Tsp_det is about 10.7ms.

When HV lost, Tsp_det is about 60ms.

Don't connect this pin to an output pin in customer system, it may be connected to input pin or NC.

Please keep no any pull up or pull low resister connect to this pin on your system when this pin is used for fail detection.

2.2 Pin assignment (backlight Interface)

Recommend connector: JUSTCONN 101049-201050

No	Symbol	I/O	Description Remarks
1	A1	Р	LED Anode
2	A2	Р	LED Anode
3	A3	Р	LED Anode
4	NC	N	Keep this pin open
5	THER+	0	Thermistor +
6	THER-	0	Thermistor -
7	NC	Ν	Keep this pin open
8	C3	Р	LED Cathode
9	C2	Р	LED Cathode
10	C1	Р	LED Cathode

I/O definition:

I----Input O----Output I/O----Input/Output P----Power/Ground

3 Absolute Maximum Ratings

GND=0V

ltem	Symbol	Min	Мах	Unit	Remark
Logic Supply Voltage	VDD	-0.5	5	V	
Operating Temperature	T _{OPR}	-30	85	°C	-
Storage Temperature	T _{STG}	-40	90	°C	
			≪95	%	Ta≪40 ℃
			≪85	%	40° ℃ <ta< b="">≤50°℃</ta<>
Relative Humidity (Note1)	RH		≤55	%	50° C <i><</i> Ta≤60°C
()			≤36	%	60°C <i><</i> Ta≤70°C
			≤24	%	70°C <i><</i> Ta≤80°C
Absolute Humidity	AH	-	≤70	g/m³	Ta>70 ℃

Note 1: Ta means the ambient temperature.

It is necessary to limit the relative humidity to the specified temperature range. Condensation on the module is not allowed.

4 Electrical Characteristics

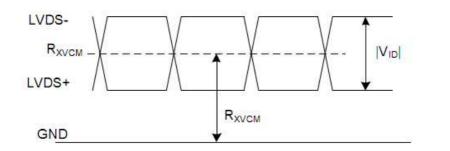
4.1 Driving TFT LCD Panel

GND=0V, **Ta=25**℃

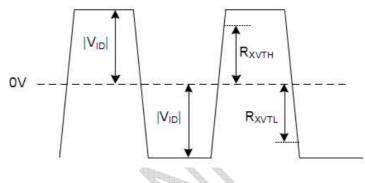
ltem	Symbol	Min	Тур	Мах	Unit	Remark
Logic Supply Voltage	VDD	3.2	3.3	3.4	V	
Permissible Inrush current of VDD	lvdd			920	MA	Note 1
Input High Voltage	V _{IH}	0.7*VDD		VDD	>	Note 2
Input Low Voltage	VIL	GND		0.3*VDD	V	Note 2
Power Consumption	White mode (60Hz)		900	1350	MVV	Note 3

Note 1:

T≥0. 5ms VDD

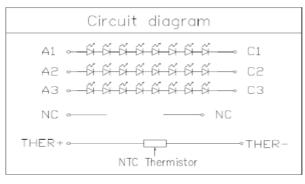

Note 2: Contain RESET, STBYB, SHLR, UPDN Note 3: VDD=3.3V.

LVDS Interface DC characteristic


Symbol	Condition		Spec		Unit
Symbol Condition		Min	Тур	Max	Unit
Rxутн		-	-	+0.2	V
Rxvtl		-0.2-	-	-	V
Rxvсм	-	1	1.2	1.7- Vid /2	V
Vid	-	0.2	-	0.6	V
Ilvleak		-10	-	10	uA
RLVDS			100		Ω
-	RxVTL RxVCM [Vid] Ilvleak	RxVTH RxVTL RxVCM [Vid] Ilvleak	RxVTH - RxVTL -0.2- RxVCM - IVid - Ivleak -10	Min Тур Rxvтн - - RxvтL -0.2- - Rxvcм - 1 1.2 [Vid] - 0.2 - Ilvleak -10 - -	Min Typ Max RxVTH - - +0.2 RxVTL -0.2- - - RxVCM - 11 1.2 1.7- Vid /2 Vid - 0.2 - 0.6 Ilvleak -10 - 10

Single-end Signal:

Differential Signal



4.2 Driving Backlight

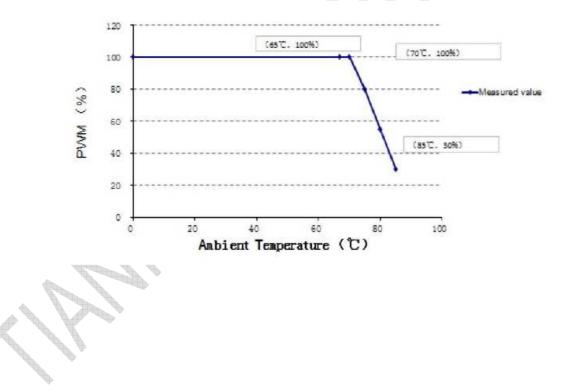
Ta=25°℃

ltem	Symbol	Min	Тур	Max	Unit	Remark
Forward Current	I _{BL}		90	-	mA	
Forward Voltage	V _{BL}	21.6	24.24	26.6	V	
Power Consumption	● W _{BL}	5.83	6.55	7.18	mW	
Operating Life Time			20000		Hrs	

Note 1: The figure below shows the connection of backlight LED. Each LED : I=90 mA, V =3.03V.

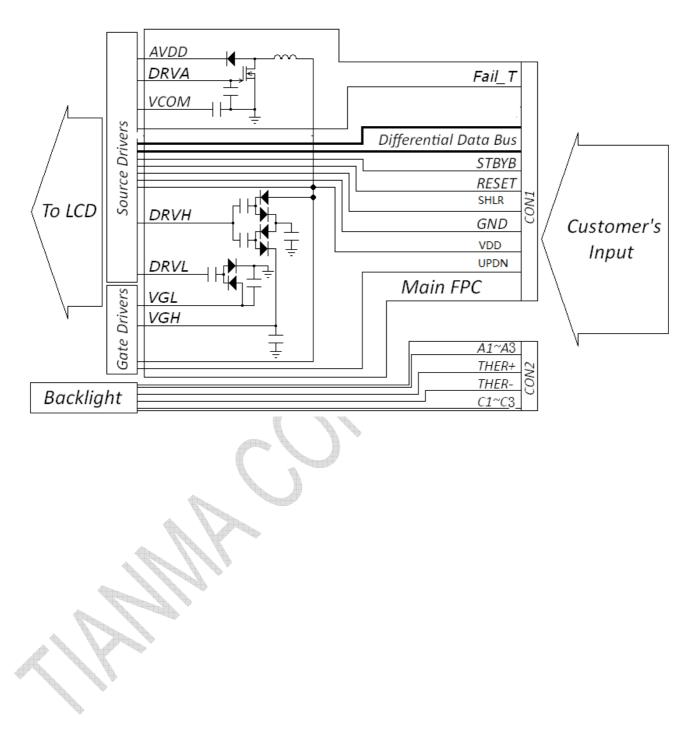
Note 2: IF is defined for one channel LED.Optical performance should be evaluated at Ta=25 $^\circ\!C$ only. If LED is driven by high current, high ambient temperature & humidity condition, the life time of

LED will be reduced. Operating life means brightness goes down to 50% initial brightness. Typical operating life time is estimated data.


Note 3: It is suggested customer to make sure the LCM module is well heat dissipation. It is preliminary suggested to start de-rating from 65° C of the NTC sensor.

Note 4: The NTC thermistor Part No. is NCP15XH103F0SRC. NTC thermistor is included in LED circuit. Pls refer to appendix for NTC temperature behavior.

Note 5: LED current's de-rating in backlight, please refer to the following chart. (Just for reference, Tianma will arrange test at sample phase).


-		2005. 105.
ltem	Value	Remarks
Туре	NCP15XH103F0SRC	Murata
Resistance Tolerance	10k Ω ±1%	Ta=25℃
Temperature Characteristic	Nominal B-Constant 3350-3399K	Ta=25 to +85℃
Permissive Operating Current	0.31mA	Ta=25℃
Absolute Maximum Power Consumption	100mW	Ta=25℃

Note 6: The de-rating curve for the backlight is shown below. The de-rating temperature is >75 $^\circ$ C

4.3 Clock Diagram

5 Timing Characteristics

5.1 Input timing

5.1.1 Input timing table

Parameter	Symbol	Unit	Min.	Тур.	Max.	REMARKS
Clock Frequency	f _{dck}	MHz	44.6	44.7	50.2	
H Total Time	T _{hp}	clocks	1020	1024	1150	
H Active Time	HA	clocks		960		
V Total Time	T _{vp}	lines	726	728	849	
V Active Time	VA	lines		720		
V Frequency	f _v	Hz	-	60Hz	-	

Note: Above of all these information is just for reference, the final information should be based on the test result of module and be set for module in initial code. Timing will update later

5.1.2 LVDS input timing format

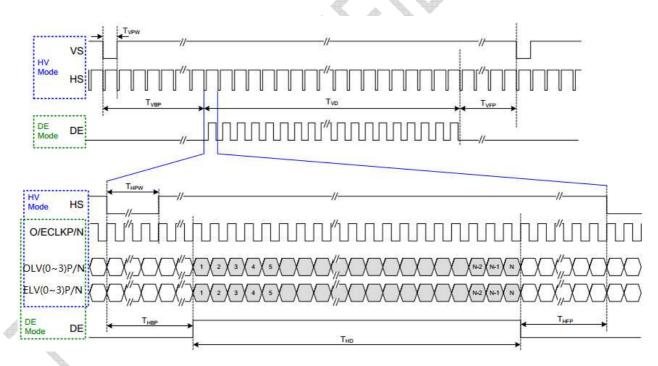
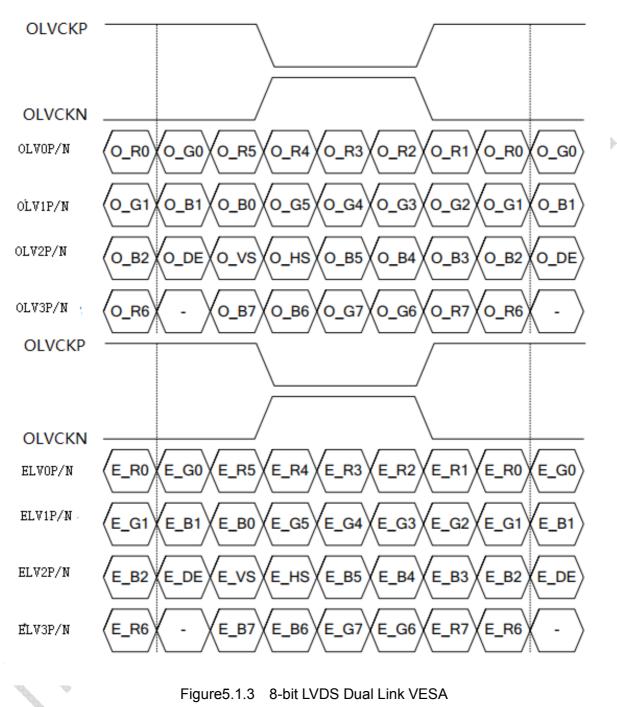



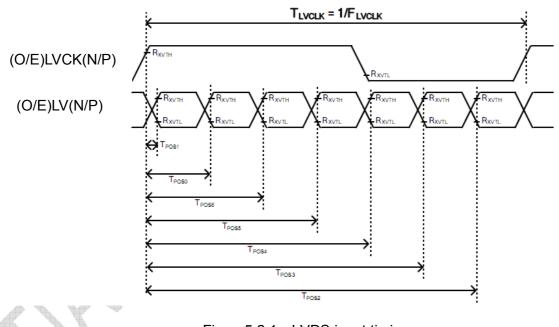
Figure 5.1.2. LVDS input timing format

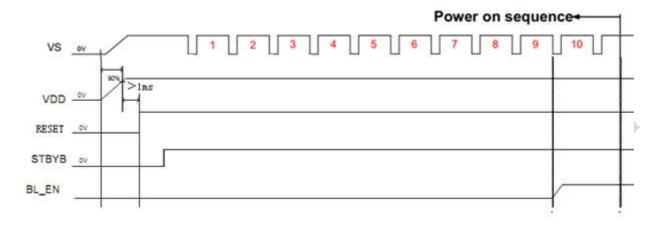
🔽 TIANMA

5.1.3 Dual-Link LVDS input Data Format

5.2 LVDS interface AC characteristic

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
Clock frequency	FLVCLK	25	Ē	85	MHz	Refer to input timing table for each display resolution.
Clock Period	TLVCLK	11.76		40	ns	
Clock high time	TLVCH	-	4/(7* TLVCLK)	25	ns	
Clock low time	TLVCL	-	3/(7* TLVCLK)	-	ns	
Input data skew margin	TRSKM	-	¥	0.25	UI	VCC_IF=1.8V w/o SSC
Strobe width	TSW	0.5	-	-	UI	
1 data bit time	UI	540	1/7	82	TLV CLK	
Position 1	TPOS1	-0.25	0	0.25	UI	
Position 0	TPOS0	0.75	1	1.25	UI	
Position 6	TPOS6	1.75	2	2.25	UI	
Position 5	TPOS5	2.75	3	3.25	UI	
Position 4	TPOS4	3.75	4	4.25	UI	
Position 3	TPOS3	4.75	5	5.25	UI	
Position 2	TPOS2	5.75	6	6.25	UI	





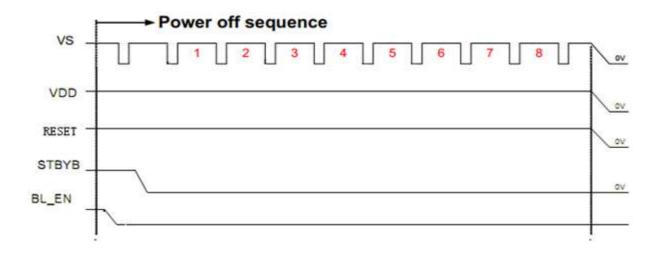


Figure 5.2.2 LVDS Data Skew

5.3 Power on/off sequence

5.4 VDD/RESET Timing

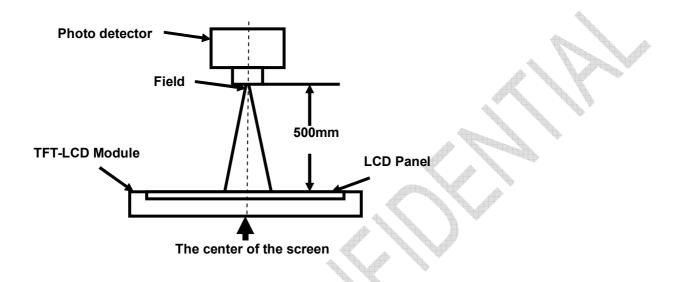
Parameter	5	Symbol	Min.	Typ.	Max.	Unit	Conditions
VDD power source slew time		TPOR	0.5	5	20	ms	From 0V to 90% VDD
RESET active pul	se width	T _{GRB}	1	-	-	ms	VDDIO = 3.3V
VDD	90%			- 83			

6 Optical Characteristics

6.1 Optical Specification

								Ta=25 ℃
Item		Symbol	Condition	Min	Тур.	Max.	Unit	Remark
		θΤ		80	88			
		θΒ	CR≧10	80	88		Dograa	Note 2
View Angles		θL		80	88		Degree	NOIE 2
		θR		80	88			
Contrast Ratio		CR	θ=0°	700	1000	I		Note1 Note3
Response	Time	T _{ON} T _{OFF}	25°C		20	30	ms	Note1 Note4
		х		0.240	0.290	0.340		
	White	у	-	0.257	0.307	0.357		
	Ded	х		0.579	0.629	0.679		
Chromoticity	Red	У	Backlight is	0.285	0.335	0.385		Note5,
Chromaticity	Croop	х	on	0.250	0.300	0.350		Note1
	Green	У		0.583	0.633	0.683		
	Blue	х		0.098	0.148	0.198		
	Diue	у		0.012	0.062	0.112		
Uniformity		U		75	80		%	Note1 Note6
NTSC				65	75		%	Note 5
Luminance		Ľ		600	800		cd/m ²	Note1 Note7

Test Conditions:


1.

- V_F =3.03V, I_F =90mA(LED current), the ambient temperature is 25°C.
- 2. The test systems refer to Note 1 and Note2.

Note 1: Definition of optical measurement system.

The optical characteristics should be measured in dark room. After 5 minutes operation, the optical properties are measured at the center point of the LCD screen. All input terminals LCD panel must be ground when measuring the center area of the panel.

Note 2: Definition of viewing angle range and measurement system. viewing angle is measured at the center point of the LCD by EZ-Contrast.

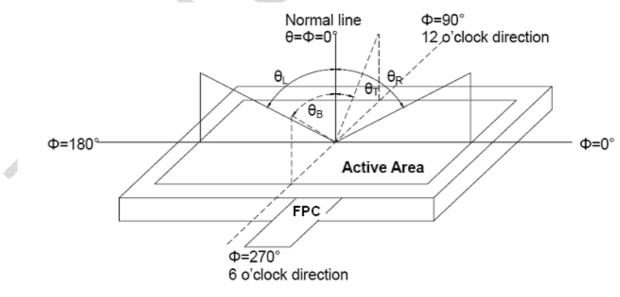
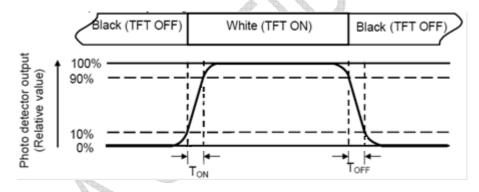


Fig. 1 Definition of viewing angle

Note 3: Definition of contrast ratio

```
Contrast ratio (CR) = \frac{\text{Luminance measured when LCD is on the "White" state}}{\text{Luminance measured when LCD is on the "Black" state}}
```


"White state ": The state is that the LCD should driven by Vwhite.

"Black state": The state is that the LCD should driven by Vblack.

Vwhite: To be determined Vblack: To be determined.

Note 4: Definition of Response time

The response time is defined as the LCD optical switching time interval between "White" state and "Black" state. Rise time (TON) is the time between photo detector output intensity changed from 10% to 90%. And fall time (TOFF) is the time between photo detector output intensity changed from 90% to 10%.

Note 5: Definition of color chromaticity (CIE1931) Color coordinates measured at center point of LCD.

TIANMA

Note 6: Definition of Luminance Uniformity

Active area is divided into 9 measuring areas (Refer Fig. 2). Every measuring point is placed at the center of each measuring area.

Luminance Uniformity(U) = Lmin/ Lmax

L-----Active area length W----- Active area width

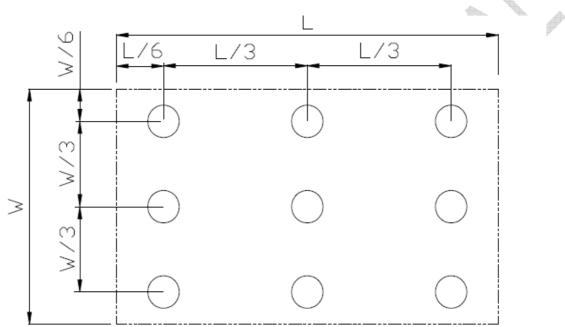


Fig. 2 Definition of uniformity

Lmax: The measured maximum luminance of all measurement position.

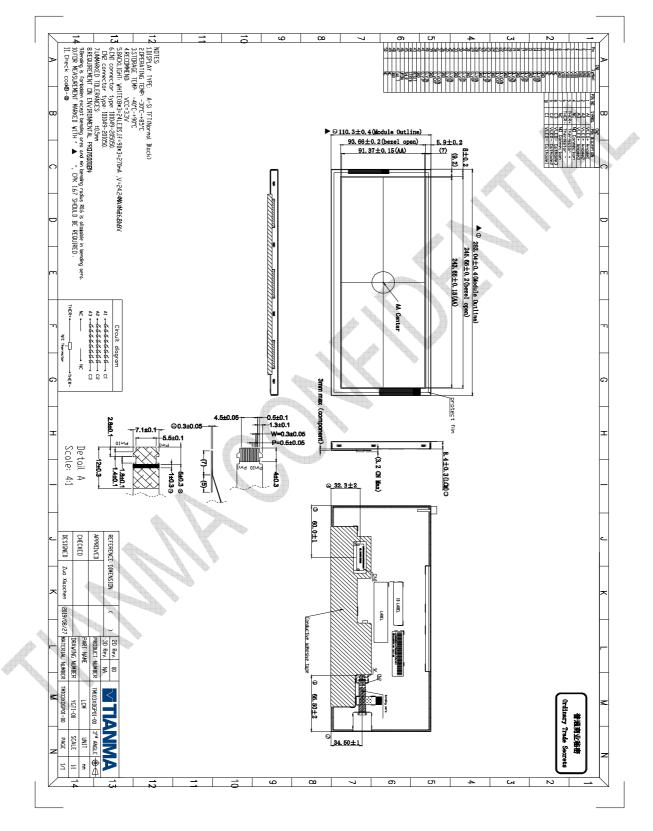
Lmin: The measured minimum luminance of all measurement position.

Note 7: Definition of Luminance :

Measure the luminance of white state at center point.

7 Environmental / Reliability Tests

No	Test Item	Condition	Remarks
1	High Temperature Operation	Ta=+85℃, 240hrs	IEC60068-2-2:2007 GB2423.2-2008
2	Low Temperature Operation	Ta=-30℃, 240hrs	IEC60068-2-1:2007 GB2423.1-2008
3	High Temperature Storage	Ta=+90℃, 240hrs	IEC60068-2-2:2007 GB2423.2-2008
4	Low Temperature Storage	Ta=-40℃, 240hrs	IEC60068-2-1:2007 GB2423.1-2008
5	Temperature & Humidity Operation	Ta=60℃, 90% RH 240 hours	IEC60068-2-78 :2001 GB/T2423.3-2016
6	Thermal Shock (Non-operation)	-40℃ 30 min~+85℃ 30 min, Change time:5min, 100 Cycles	Start with cold temperature, End with high temperature, IEC60068-2-14:1984 GB2423.22-2012
7	Electro Static Discharge (Operation)	C=150pF, R=330Ω→5points/panel Air:±15KV, 5times; Contact:±8KV, 5 times; (Environment: 15℃~35℃, 30%~60%, 86Kpa~106Kpa)	IEC61000-4-2:2001 GB/T17626.6-2006
8	Vibration (Non-operation)	Frequency range:10~55Hz Stroke:1.5mm Sweep:10Hz~55Hz~10Hz 2h for x,y,z(total 6h)	IEC60068-2-6:1982 GB/T2423.10-2019
9	Shock (Non-operation)	Half Sine Wave 60G ,6ms,±X,±Y,±Z 3times for each direction	GB/T 2423.5-2019
10	Package Drop Test	Height: 80 cm, 1 corner, 3 edges, 6 surfaces	GB/T 4857.5-1992


Note 1: Ta is the ambient temperature of sample.

Note 2: Before cosmetic and function test, the product must have enough recovery time, at least 2 hours at room temperature.

Note 3: In the standard condition, there shall be no practical problem that may affect the display function. After the reliability test, the product only guarantees operation, but don't guarantee all of the cosmetic specification.

8 Mechanical Drawing



Model No.TM103XDGP01

P	acking drawin	ng				-
No	Item	Model (Material)	Dimensions(mm)	Unit Weight(Kg)	Quantity	Remark
1	LCM module	TM103XDGP01-00	262.04x110.30x8.4	0.447	17	
2	PP BOX(BOTTOM)	PP BOX 盒底	533*368*165	0.415	1	
3	PP BOX(UP)	PP BOX盒盖	529*364*35	0.172	1	
4	Carton	Corrugated Paper	550*385*202	1	1	
5	Anti-static bag	防静电袋	305*170	~	17	
6	Таре	美纹胶带	30*10		17	
7	Desiccant	干燥剂	45*48	0.003	16	
8	Label	标签	80*60		1	
9	Velcro	魔术贴	1300*25		2	
	Total weight		9.234±5%	Kg		

纸箱堆叠数:每层5箱*共5层;栈板尺寸:1200*1000mm

10 Precautions For Use of LCD modules

10.1 Handling Precautions

- 10.1.1. The display panel is made of glass. Do not subject it to a mechanical shock by dropping it from a high place, etc.
- 10.1.2. If the display panel is damaged and the liquid crystal substance inside it leaks out, be sure not to get any in your mouth, if the substance comes into contact with your skin or clothes, promptly wash it off using soap and water.
- 10.1.3. Do not apply excessive force to the display surface or the adjoining areas since this may cause the color tone to vary.
- 10.1.4. The polarizer covering the display surface of the LCD module is soft and easily scratched. Handle this polarizer carefully.
- 10.1.5. If the display surface is contaminated, breathe on the surface and gently wipe it with a soft dry cloth. If still not completely clear, moisten cloth with one of the following solvents:
 - Isopropyl alcohol
 - Ethyl alcohol

Solvents other than those mentioned above may damage the polarizer. Especially, do not use the following:

- Water
- Ketone
- Aromatic solvents
- 10.1.6. Do not attempt to disassemble the LCD Module.
- 10.1.7. If the logic circuit power is off, do not apply the input signals.
- 10.1.8. To prevent destruction of the elements by static electricity, be careful to maintain an optimum work environment.
- 10.1.8.1. Be sure to ground the body when handling the LCD Modules.
- 10.1.8.2. Tools required for assembly, such as soldering irons, must be properly ground.
- 10.1.8.3. To reduce the amount of static electricity generated, do not conduct assembly and other work under dry conditions.
- 10.1.8.4. The LCD Module is coated with a film to protect the display surface. Be care when peeling off this protective film since static electricity may be generated.

10.2 Storage Precautions

- 10.2.1. When storing the LCD modules, avoid exposure to direct sunlight or to the light of fluorescent lamps.
- 10.2.2. The LCD modules should be stored under the storage temperature range. If the LCD modules will be stored for a long time, the recommend condition is:

Temperature : 0° C $\sim 40^{\circ}$ C Relatively humidity: $\leq 80\%$

10.2.3. The LCD modules should be stored in the room without acid, alkali and harmful gas.

10.3 Transportation Precautions

The LCD modules should be no falling and violent shocking during transportation, and also should avoid excessive press, water, damp and sunshine.