MODEL NO :	TM213XDGP04
MODEL VERSION:	00
SPEC VERSION :	V1.0
ISSUED DATE:	2020-11-11
Document number:	PDB-工业 1-20-C-084

Preliminary Specification Final Product Specification

Customer :_____

Approved by	Notes

TIANMA Confirmed :

Prepared by	Checked by	Approved by
Zhou Wenbo	Zhu Guanchen	Zhu Guanchen
2020.11.11	2020.11.11	2020.11.11

This technical specification is subjected to change without notice

The information contained herein is the exclusive property of Tianma Microelectronics Co., Ltd., and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of Tianma Microelectronics Co., Ltd..

Table of Contents

Tab	le of Contents	2
Rec	cord of Revision	3
1	General Specifications	4
2	Input/Output Terminals	5
3	Absolute Maximum Ratings	8
4	Mechanical Characteristics	8
5	Electrical Characteristics	9
6	Timing Chart	15
7	Optical Characteristics	21
8	Environmental / Reliability Test	25
9	Mechanical Drawing	26
10	Packing Drawing	27
11	Precautions For Use of LCD Modules	30

The information contained herein is the exclusive property of Tianma Microelectronics Co., Ltd., and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of Tianma Microelectronics Co., Ltd..

Record of Revision

Rev	Issued Date	Description	Editor
1.0	2020-11-11	Preliminary Specification Released.	Zhou Wenbo

The information contained herein is the exclusive property of Tianma Microelectronics Co., Ltd., and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of Tianma Microelectronics Co., Ltd..

1 General Specifications

Feature		Spec
	Size (inch)	21.3
	Resolution	1200(RGB)*1600
	Technology Type	SFT
Diamley Spee	Pixel Configuration	RGB vertical stripe
Display Spec.	Pixel Pitch (mm)	0.27072 x 0.27072
	Display Mode	Transmissive, Normally Black
	Polarizer pencil-hardness	3H (min.) [by JIS K5600]
	Surface Treatment (Up Polarizer)	Antiglare
	Luminance (cd/m2)	900 Тур.
Optical	Contrast ratio	(2000:1) Typ.
Characteristics	Response time Ton+Toff (ms)	(35) Тур.
	Viewing angle R/L/U/D (Degree)	89/89/89/89 Typ.
		At the contrast ratio $\geq 10:1$
	LCM (W x H x D) (mm)	336x 453 x TBD Typ.
Mechanical	Active Area (mm)	324.864 x 433.152
Characteristics	With /Without TSP	Without TSP
	Weight (g)	ТВО Тур.
	Backlight LED replacement	Not Available
	Interface	2port LVDS, 8bit
	Power aupply veltage (1/)	LCD panel: 12.0V Typ.
	Power supply voltage (v)	Backlight: 24.0V Typ.
Electrical	Color Depth	16.7M
Characteristics	Backlight LED driver	Build in.
	Power consumption (W)	(48.6)W (typ.) At checkered flag pattern, the maximum luminance control

Note 1 : Requirements on Environmental Protection: Q/S0002

Note 2 : LCM weight max. tolerance : +10%

The information contained herein is the exclusive property of Tianma Microelectronics Co., Ltd., and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of Tianma Microelectronics Co., Ltd..

2 Input/Output Terminals

2.1 TFT LCD Panel

CN1 socket (LCD r	nodule side): FI-RE41S-HF	(Japan Aviation Electronics Industry Limited (JAE))
Adaptable plug:	FI-RE41HL	(Japan Aviation Electronics Industry Limited (JAE))

Pin No.	Symbol	Signal	Remarks			
1	GND	Ground	Note1			
2	DA0-	Divel date A0	Odd pixel data input (LVDS DIFFERENTIAL			
3	DA0+	Pixel data A0	DATA) Note2			
4	GND	Ground	Note1			
5	DA1-	Divel data A1	Odd pixel data input (LVDS DIFFERENTIAL			
6	DA1+	Pixel data A I	DATA) Note2			
7	GND	Ground	Note1			
8	DA2-	Divel data A2	Odd pixel data input (LVDS DIFFERENTIAL			
9	DA2+	Pixel dala Az	DATA) Note2			
10	GND	Ground	Note1			
11	CKA-	Rivel clock	Odd pixel clock input (LVDS DIFFERENTIAL			
12	CKA+	FIXELCIOCK	DATA) Note2			
13	GND	Ground	Note1			
14	DA3-	Divel data A2	Odd pixel data input (LVDS DIFFERENTIAL			
15	DA3+	Fixer data AS	DATA) Note2			
16	GND	Ground	Note1			
17	DB0-	Rivel data R0	Even pixel data input (LVDS DIFFERENTIAL			
18	DB0+		DATA) Note2			
19	GND	Ground	Note1			
20	DB1-	Pixol data R1	Even pixel data input (LVDS DIFFERENTIAL			
21	DB1+		DATA) Note2			
22	GND	Ground	Note1			
23	DB2-	Divol data R2	Even pixel data input (LVDS DIFFERENTIAL			
24	DB2+	Fixel uata D2	DATA) Note2			
25	GND	Ground	Note1			
26	CKB-	Pixel clock	Even pixel clock input (LVDS DIFFERENTIAL			
27	CKB+		DATA) Note2			
28	GND	Ground	Note1			
29	DB3-	Divel data B3	Even pixel data input (LVDS DIFFERENTIAL			
30	DB3+		DATA) Note2			
31	GND	Ground	Note1			
32	NA	NA	NA			
33	RSVD	For internal use				
34	NA	NA	NA			
35	VDD					
36	VDD					
37	VDD	Power supply	Note1			
38	VDD					
39	VDD					
40	GND	Ground	Note1			
41	GND	Ground	Note1			

Note1: All GND and VCC terminals should be used without any non-connected lines. Note2: Twist pair wires with 100Ω (Characteristic impedance) should be used between LCD panel signal processing board and LVDS transmitter.

The information contained herein is the exclusive property of Tianma Microelectronics Co., Ltd., and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of Tianma Microelectronics Co., Ltd..

2.2 Backlight

CN201 socket (LCD module side): DF3EA-10P-2H(21) (HIROSE ELECTRIC Co., Ltd.) Adaptable plug: DF3-10S-2C (HIROSE ELECTRIC Co., Ltd.)

	<u> </u>		
Pin No.	Symbol	Function	Description
1	GNDB		
2	GNDB		
3	GNDB	LED driver ground	Note1
4	GNDB		
5	GNDB		
6	VDDB		
7	VDDB		
8	VDDB	Power supply	Note1
9	VDDB		
10	VDDB		

Note1: All VDDB and GNDB terminals should be used without any non-connected lines.

CN202 socket (LCD module side): 53261-0971 (MOLEX Inc.) Adaptable plug: 51021-0900 (MOLEX Inc.)

table plug	j.		/
Pin No.	Symbol	Function	Description
1	PWSEL	Selection of luminance control signal method	Note1, Note2
2	GNDB	LED driver ground	Note3
3	BRTP	BRTP signal	
4	BRTI	Luminanaa aantral tarminal	Note1
5	BRTH		
6	BRTC	Backlight ON/OFF control signal	High or Open: Backlight ON Low: Backlight OFF
7	N. C.	-	Keep this pin Open.
8	GNDB	LED driver ground	Noto2
9	GNDB		noles

Note1: See "5.3 LUMINANCE CONTROL ".

Note2: When VDDB is 0V or BRTC is Low, PWSEL must be set to Low or Open. Note3: All GNDB terminals should be used without any non-connected lines.

The information contained herein is the exclusive property of Tianma Microelectronics Co., Ltd., and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of Tianma Microelectronics Co., Ltd..

2.3 Positions of Socket

The information contained herein is the exclusive property of Tianma Microelectronics Co., Ltd., and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of Tianma Microelectronics Co., Ltd..

3 Absolute Maximum Ratings

Parameter		Symbol	Rating	Unit	Remarks	
Power supply	LCD panel signal processing board		VDD	-0.3 to +15.0	V	To- 2500
voltage	LI	ED driver	VDDB	-0.3 to +28.0	V	1a= 25°0
	LCD panel signal processing board Note1		Vi	-0.3 to +2.8	V	VDD= 12.0V Ta= 25°C
		BRTI signal	VBI	-0.3 to +1.5	V	
Input voltage for signals	LED driver	BRTP signal	VBP	-0.3 to +5.5	V	VDDB= 24.0V
		BRTC signal	VBC	-0.3 to +5.5	V	Ta= 25°C
		PWSEL signal	VBS	-0.3 to +5.5	V	
Storage temperature			Tst	-20 to +60	°C	-
Center of front surface			TopF	0 to +60	°C	Note2
Operating	temperature	Edge of front surface	TopF	0 to +65	°C	Note2
		Edge of rear surface	TopR	0 to +70	°C	Note3
				≤ 95	%	$Ta \leq 40^\circ C$
	Relative hum Note4, Not	nidity e6	RH	≤ 85	%	40°C < Ta ≤ 50°C
				≤ 55	%	50°C < Ta ≤ 60°C
Absolute humidity Note4, Note6			AH	≤ 70 Note5	g/m ³	Ta > 60°C
Operating altitude			-	≤ 5,100	m	$0^{\circ}C \le Ta \le 60^{\circ}C$
Storage altitude			-	≤ 13,600	m	$-20^{\circ}C \le Ta \le 60^{\circ}C$

Note1: DA0+/-, DA1+/-, DA2+/-, DA3+/-, CKA+/-, DB0+/-, DB1+/-, DB2+/-, DB4+/-, CKB+/-.

Note2: Measured at LCD panel surface (including self-heat)

Note3: Measured at LCD module's rear shield surface (including self-heat)

Note4:No condensation

Note5:Water amount at Ta= 60°C and RH= 55%

Note6:Rapid change of humidity and temperature may cause degradation of the image quality.

4 Mechanical Characteristics

Parameter	Specification		Unit
Module size	336.0 ±0.5 (W) × 453.0 ±0.5 (H) × TBD (D)	Note1	mm
Weight	TBD. (typ.), TBD, (max.)		g

Note1: See "9 Mechanical Drawing ".

5 Electrical Characteristics

5.1 Driving TFT LCD Panel

-							(Ta= 25°C)
Parameter		Symbol	min.	typ.	max.	Unit	Remarks
Power supply voltage		VDD	10.8	12.0	13.2	V	-
Power supply current		IDD	-	(450) Note1	(600) Note2	mA	at VDD= 12.0V
Permissible ripple voltage		VRP	-	-	200	mVp-p	for VDD Note3,4,5
Differential input threshold	High	VTH	-	-	+100	mV	at VCM= 1.2V
voltage	Low	VTL	-100	-	-	mV	Note6,7
Input voltage swing		VI	(0)	-	(2.4)	V	Note7
Terminating resistance		RT	-	(100)	-	Ω	-

Note1: Checkered flag pattern [by IEC 61747-6]

Note2: Pattern for maximum current

Note3: This product works even if the ripple voltage levels are over the permissible values, but there might be noise on the display image.

Note4: The permissible ripple voltage includes spike noise.

Note5: The load variation influence does not include.

Note6: Common mode voltage for LVDS driver

Note7: DA0+/-, DA1+/-, DA2+/-, DA3+/-, CKA+/-, DB0+/-, DB1+/-, DB2+/-, DB3+/-, CKB+/-,

The information contained herein is the exclusive property of Tianma Microelectronics Co., Ltd., and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of Tianma Microelectronics Co., Ltd..

Driving Backlight 5.2

								ia= 25°C)
F	Parameter		Symbol	min.	typ.	max.	Unit	Remarks
Power	supply voltage		VDDB	22.8	24.0	25.2	V	Note1
Power	supply current		IDDB	-	(1800)	(2040) Note2	mA	VDDB= 24.0V, At the maximum luminance control
Permissil	ble ripple volta	ge	VRPB	-	-	200	mVp-p	for VDDB Note3, 4, 5
	BRTI signal		VBI	0	-	1.0	V	
		High	VBPH	2.0	-	5.25	V	
	BRTP signal	Low	VBPL	0	-	0.8	V	
Input voltage for signals		High	VBCH	2.0	-	5.25	V	
	BRIC Signal	Low	VBCL	0	-	0.8	V	
	PWSEL	High	VBSH	2.0	-	5.25	V	
	signal	Low	VBSL	0	-	0.8	V	
	BRTI signal		IBI	(-200)	-	(-50)		-
		High	IBPH	-	-	(1,000)		
	BRTP signal	Low	IBPL	(-600)	-	-		
Input current for signals		High	IBCH	-	-	(300)		
	BRIC Signal	Low	IBCL	(-300)	-	-		
	PWSEL	High	IPSH	-	-	(1,000)		
	signal	Low	IPSL	(-600)	-	-		
LED	life time		Hr		(50000)		hour	Note 6

Note1: When designing of the power supply, take the measures for prevention of surge voltage. Note2: This value excludes peak current such as overshoot current.

- Note3: This product works even if the ripple voltage levels are over the permissible values, but there might be noise on the display image.
- Note4: The permissible ripple voltage includes spike noise. Note5: The power supply lines (VDDB and GNDB) may have ripple voltage during luminance control of LED. There is the possibility that the ripple voltage produces acoustic noise and signal wave noise in audio circuit and so on.
- Note6: Optical performance should be evaluated at Ta=25°C. Only If LED is driven by high current, high ambient temperature & humidity condition. The life time of LED will be reduced. Operating life means brightness goes down to 50% of initial brightness. Typical operating life time is an estimated data.

 $(T_{\alpha} - 25^{\circ}C)$

5.3Luminance Control

5.3.1 Luminance control methods

		(1a	- 20 0)
Method	Adjustment and luminance ratio	PWSEL terminal	BRTP terminal
Variable resistor control Note1	• Adjustment The variable resistor (R) for luminance control should be $10k\Omega$ $\pm 5\%$, 1/10W. Minimum point of the resistance is the minimum luminance and maximum point of the resistance is the maximum luminance. The resistor (R) must be connected between BRTH-BRTI terminals. • Luminance ratio Note3 • Luminance ratio Note3 Resistance Luminance ratio TBD Ω 10% (typ.) 10k Ω 100%	High or Open	Open
Voltage control Note1	Adjustment Voltage control method works, when BRTH terminal is 0V and VBI voltage is input between BRTI-BRTH terminals. This control method can carry out continuation adjustment of luminance. Luminance is the maximum when BRTI terminal is Open. Luminance ratio Note3 BRTI Voltage (VBI) Luminance ratio TBDV 10% (typ.) 1.0V 100%		
Pulse width modulation (PWM) Note1 Note2 Note4	Adjustment Pulse width modulation (PWM) method works, when PWSEL terminal is Low and PWM signal (BRTP signal) is input into BRTP terminal. The luminance is controlled by duty ratio of BRTP signal. Keep BRTI and BRTH terminals Open when using PWM method. Luminance ratio O.21 21% (typ.) 1.0 100%	Low	BRTP signal

Note1: In case of the variable resistor control method and the voltage control method, noises may appear on the display image depending on the input signals timing for LCD panel signal processing board.

Use Pulse width modulation (PWM) method, if interference noises appear on the display image!

Note2: The LED driver will stop working, if the Low period of BRTP signal is more than 50ms while BRTC signal is High or Open. Then the backlight will not turn on anymore, even if BRTP signal is input again. This is not out of order. The LED driver will start to work when power is supplied again.

Note3: These data are the target values.

Note4:See "5.3.2 Detail of BRTP timing".

- 5.3.2 Detail of BRTP timing
- (1) Timing diagrams
 - Outline chart

(2) Each parameter

Parameter	Symbol	min.	typ.	max.	Unit	Remarks
PWM frequency	f _{PWM}	(185)	-	(20k)	Hz	Note1,2,3
PWM duty ratio	DR _{PWM}	(21)	-	100	%	Note4,5
PWM pulse width	tPWH	(10)	-	-	μs	Note1,4,5

Note1:Definition of parameters is as follows.

$$f_{PWM} = \frac{1}{tPW}$$
, $DR_{PWM} = \frac{tPWH}{tPW}$

Note2:A recommended f_{PWM} value is as follows.

$$f_{PWM} = \frac{2n-1}{4} \times fv$$

(n= integer, fv= frame frequency of LCD module)

Note3:Depending on the frequency used, a noise may appear on the screen, please conduct a thorough evaluation.

- Note4: While the BRTC signal is high, do not set the tPWH (PWM pulse width) is less than the minimum values. It may cause abnormal working of the backlight. In this case, turn the backlight off and then on again by BRTC signal.
- Note5:Regardless of the PWM frequency, both PWM duty ratio and PWM pulse width must be always more than the minimum values.

5.4 Block Diagram

The information contained herein is the exclusive property of Tianma Microelectronics Co., Ltd., and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of Tianma Microelectronics Co., Ltd..

TM213XDGP04

Note1:Relations between GND (Signal ground), FG (Frame ground) and GNDB (LED driver ground) in the LCD module are as follows.

GND - FG	Connected
GND - GNDB	Not connected
FG - GNDB	Not connected

Note2:GND, FG and GNDB must be connected to customer equipment's ground, and it is recommended that these grounds to be connected together in customer equipment.

Note3: Each pair of the LVDS signal lines has 100Ω terminating resistance.

5.6 Fuse

Deremeter		Fuse	Dating	Eucing current	Demorko
Parameter	Туре	Supplier	Rating	Fusing current	Remarks
	TRD	TRD	T.B.D.A		
VDD	1.6.0	1.0.0	T.B.D.V	I.B.D.A	Niete1
	трр	TRD	T.B.D.A		Noter
VDDB	т.в.D.	1.B.D.	T.B.D V	I.B.D.A	

Note1: The power supply's rated current must be more than the fusing current. If it is less than the fusing current, the fuse may not blow in a short time, and then nasty smell, smoke and so on may occur.

The information contained herein is the exclusive property of Tianma Microelectronics Co., Ltd., and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of Tianma Microelectronics Co., Ltd..

MTIANMA

6 Timing Chart

6.1 Timing Characteristics

(Note1,	Note2,	Note3,	Note4)
---------	--------	--------	--------

	Parameter		Symbol	min.	typ.	max.	Unit	Remarks
	Frec	luency	1/ tc	TBD	(73.5)	TBD	MHz	
CLK	Dut	y ratio	-				-	-
	Rise time	e, Fall time	-				ns	-
		Setup time	-	See the	data sheet o	of LVDS	ns	-
DATA	CLK-DAIA	Hold time	-		transmitter.		ns	-
	Rise time	e, Fall time	-				ns	-
		Cuelo	th	-	(9.54)	-	μS	
	Horizontal	Cycle	un	TBD	(700)	TBD	CLK	
	Tionzontai	Display period	thd		600			-
	Vertical	Cyclo	tı.	-	(16.7)	-	ms	60.0 Hz (two.)
DE	(One	Cycle	ιv	TBD	(1750)	TBD	Н	60.0HZ (lyp.)
	frame)	Display period	tvd		1600		Н	-
		Setup time	-				ns	-
	OLN-DE	Hold time	-	See the	transmitter	I LVDS	ns	-
	Rise time	e, Fall time	-		a anomittor.		ns	-

Note1: Definition of parameters is as follows.

tc= 1CLK, th= 1H

Note2: See the data sheet of LVDS transmitter.

Note3: Vertical cycle (tv) should be specified in integral multiple of Horizontal cycle (th).

Note4: Definition for landscape

The information contained herein is the exclusive property of Tianma Microelectronics Co., Ltd., and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of Tianma Microelectronics Co., Ltd..

6.2 Input Signal Timing Chart

6.4 LVDS Rx AC SPEC

Symbol	Parameter	min.	typ.	max.	Unit
t _{RCIP}	CKy_+ Period	TBD	-	TBD	ns
t _{RCIH}	CKy_+ High pulse width	-	$\frac{4}{7}t_{\text{RCIP}}$	-	ns
t _{RCIL}	CKy_+ Low pulse width	-	$\frac{3}{7}t_{\text{RCIP}}$	-	ns
t _{RMG}	Receiver Data Input Margin	TBD	-	TBD	ns
t _{RIP1}	Input Data Position 0	- t _{RMG}	0.0	+ t _{RMG}	ns
t _{RIP0}	Input Data Position 1	$rac{\mathrm{trcip}}{7}$ – trmg	$rac{ ext{trcip}}{7}$	$rac{\mathrm{trcip}}{7}$ + trmg	ns
t _{RIP6}	Input Data Position 2	$2rac{ ext{trcip}}{7} - ext{trmg} $	$2\frac{\mathrm{trcip}}{7}$	$2\frac{t_{\rm RCIP}}{7}$ + t_{\rm RMG}	ns
t _{RIP5}	Input Data Position 3	$3\frac{\mathrm{trcip}}{7} - \mathrm{trmg} $	$3\frac{\mathrm{trcip}}{7}$	$3\frac{t_{\rm RCIP}}{7}$ + t_{\rm RMG}	ns
t _{RIP4}	Input Data Position 4	$4rac{ ext{trcip}}{7} - ext{trmg} $	$4rac{ ext{trcip}}{7}$	$4\frac{t_{\rm RCIP}}{7}$ + t_{\rm RMG}	ns
t _{RIP3}	Input Data Position 5	$5\frac{\mathrm{trcip}}{7} - \mathrm{trmg} $	$5\frac{\text{trcip}}{7}$	$5\frac{t_{\rm RCIP}}{7}$ + t_{\rm RMG}	ns
t _{RIP2}	Input Data Position 6	$6\frac{t_{\rm RCIP}}{7} - t_{\rm RMG} $	$6\frac{\text{trcip}}{7}$	$6\frac{t_{\rm RCIP}}{7} + t_{\rm RMG} $	ns

6.5 Display Colors and Input Data Signals

This product can display 256 gray scales in each RGB sub-pixel and 256 gray scales per 1 pixel. Also the relation between display gray scale and input data signals is as follows.

Dienlay	colore							[Data	ı siç	jnal	(0:	Low	lev	el, 1	I: Hi	gh l	eve	I)						
Display	COIOIS	R7	7 R6	6 R5	R4	R3	R2	R1	R0	G7	7 G6	G5	G4	G3	G2	G1	G0	B7	B6	6 B5	B4	B 3	B2	B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
ors	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CO CO	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
SiC.	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Ba	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
<u>o</u>		0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
sca	dark	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ېلا ع	\uparrow													:								:			
gra	\downarrow													:								:			
ted	bright	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
<u>r</u>		1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ale		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
SC	dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
ray	\uparrow				:																				
б ц	\downarrow				:																				
ee	bright	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
Ū		0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
e		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
sca	dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
ay :	\uparrow				:																				
gr	\downarrow				:																				
Ine	bright	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
Ê		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

6.6 Display Positions

	D (1, 1) RA GA	BA	D (2, 1) RB GB	BB			
	1						1200
1	(D(1, 1))	(D(2, 1))	•••	D(599, 1)	D(600, 1)	• • •	D(1200, 1)
2	D(1, 2)	D(2, 2)	•••	D(599, 2)	D(600, 2)	• • •	D(1200, 2)
	•	•	•	•	•	•	•
	•	•	•••	•	•	• • •	•
	•	•	•	•	•	•	•
V	D(1, Y)	D(2, Y)	•••	D(599, Y)	D(600, Y)	•••	D(1200, Y)
ř	•	•	•	•	•	•	•
	•	•	•••	•	•	• • •	•
	•	•	•	•	•	•	•
1599	D(1, 1599)	D(2, 1599)	•••	D(599, 1599)	D(600, 1599)	• • •	D(1200, 1599)
1600	D(1, 1600)	D(2, 1600)	•••	D(599, 1600)	D(600, 1600)	• • •	D(1200, 1600)

6.7 Scanning Direction

Note1: Definition for portrait

The information contained herein is the exclusive property of Tianma Microelectronics Co., Ltd., and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of Tianma Microelectronics Co., Ltd..

6.8 Power On/Off Sequence

6.7.1 LCD panel signal processing board

- Note4: After turning VDD on, terminal voltages on LVDS input terminals (*1) will rise. This is caused by initial operation of the product.
- 6.7.2 LED Driver

Note1: If tr is more than 100ms, the backlight will be turned off by a protection circuit for LED driver. Note2: When VDDB is 0V or BRTC is Low, PWSEL must be set to Low or Open.

The information contained herein is the exclusive property of Tianma Microelectronics Co., Ltd., and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of Tianma Microelectronics Co., Ltd..

7 Optical Characteristics

Ta=25℃

ltem		Symbol	Condition	Min	Тур	Max	Unit	Remark	
		θΤ		70	89	-			
		θΒ		70	89	-	Desmos	Nata O	
view Angles		θL	CR≦10	70	89	-	Degree	Note 2	
		θR		70	89	-			
Contrast Ratio)	CR	θ=0°	(1400)	(2000)	-	-	Note1 Note3	
Response Tim	e	T _{ON} +T _{OFF}	25 ℃	- (35) (45) ms				Note1 Note4	
	\//bito	х		(0.264)	(0.314)	(0.364)			
	vvnite	У		(0.276)	(0.326)	(0.376)		Note5 Note1	
	Ded	x		-	(0.680)	-			
Ohan an tiaita	Rea	у		-	(0.307)	-			
Chromaticity	0	x	Backlight is on	-	(0.270)	-	-		
	Green	у		-	(0.678)	-			
		х		-	(0.146)	-			
	Blue	у		-	(0.068)	-			
		LU1	White (255/255gray)	(80)	-	-			
Uniformity		LU2	Gray (26/255gray)	-	-	20	%	Note1 Note6	
		LU3	Gray (204/255gray)	-	-	20		NOLEO	
NTSC		-	-	TBD	(93)	-	%	Note 5	
Luminance		L	White (255/255gray)	TBD	(900)	-	cd/m ²	Note1 Note7	

Test Conditions:

- 1. The ambient temperature is $25\pm2^{\circ}$ C.humidity is $65\pm7\%$. PWM duty ratio is 100%.
- 2. The test systems refer to Note 1 and Note 2.
- 3. Contrast Ratio, Chromaticity, Uniformity, and Luminance is measured by SR-UL, SR-3AR or equivalent.
- 4. Response Time is measured by TRD-100, LCD-5200 or equivalent.

The information contained herein is the exclusive property of Tianma Microelectronics Co., Ltd., and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of Tianma Microelectronics Co., Ltd..

M TIANMA

Note 1: Definition of optical measurement system.

The optical characteristics should be measured in dark room. After 20 minutes operation, the optical properties are measured at the center point of the LCD screen. All input terminals LCD panel must be ground when measuring the center area of the panel.

Note 2: Definition of viewing angle range and measurement system.

Viewing angle is measured at the center point of the LCD by LCD5200.

The 12 o'clock direction is upper side of outline in "9 Mechanical Drawing".

The information contained herein is the exclusive property of Tianma Microelectronics Co., Ltd., and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of Tianma Microelectronics Co., Ltd..

Note 3: Definition of contrast ratio

The contrast ratio is calculated by using the following formula.

Contrast ratio (CR) = Luminance of white screen Luminance of black screen

Note 4: Definition of Response time

The response time is defined as the LCD optical switching time interval between "Black" state and "White" state. Rise time (Ton) is the time between photo detector output intensity changed from 10% to 90%. And fall time (Toff) is the time between photo detector output intensity changed from 90% to 10%.

Product surface temperature: TopF= TBD°C.

Note 5: Definition of color chromaticity (CIE1931)

Color coordinates measured at center point of LCD.

The information contained herein is the exclusive property of Tianma Microelectronics Co., Ltd., and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of Tianma Microelectronics Co., Ltd..

Note 6: Definition of Luminance Uniformity

Active area is divided into 9 measuring areas (Refer Fig. 2). Every measuring point is placed at the center of each measuring area.

Luminance Uniformity(U) = Lmin/ Lmax

L-----Active area length W----- Active area width

Fig. 2 Definition of uniformity

Lmax: The measured maximum luminance of all measurement position.

Lmin: The measured minimum luminance of all measurement position.

The Gray luminance uniformity is calculated by using following formula.

LU2/ LU3 =200*Maximum luminance from ① to ⑤- Minimum luminance from ① to ⑤Maximum luminance from ① to ⑤+ Minimum luminance from ① to ⑤

The luminance is measured at near the 5 points shown below.

Note 7: Definition of Luminance :

Measure the luminance of white state at center point.

The information contained herein is the exclusive property of Tianma Microelectronics Co., Ltd., and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of Tianma Microelectronics Co., Ltd..

8 Environmental / Reliability Test

Test item	Condition	Judgment Note1
High temperature and humidity (Operation)	1)60 ± 2°C, RH= 60%, 240hours 2)Display data is white. Note2	
Heat cycle (Operation)	 0 ± 3°C 1hour 60 ± 3°C 1hour 50cycles, 4hours/cycle 3 Display data is white. Note2 	No display malfunctions
Thermal shock (Non operation)	 -20 ± 3°C 30minutes 60 ± 3°C 30minutes 2 100cycles, 1hour/cycle Temperature transition time is within 5 minutes. 	
Vibration (Non operation)	 5 to 100Hz, 11.76m/s² 1 minute/cycle X, Y, Z directions 10 times each direction 	No display malfunctions
Mechanical shock (Non operation)	 294m/s², 11ms ±X, ±Y, ±Z directions 3 times each direction 	No physical damages
ESD (Operation)	Contact Discharge (1) 150pF, 330Ω , $\pm 8kV$ (2) 9 places on a panel surface Note3 (3) 25 times each place at 1 sec interval Air Discharge (1) 150pF, 330Ω , $\pm 15kV$ (2) 9 places on a panel surface Note3 (3) 25 times each place at 1 sec interval	No display malfunctions

- Note1: Display and appearance are checked under environmental conditions equivalent to the inspection conditions of defect criteria.
- Note2: Luminance: 600cd/m2 at luminance control.

Note3: See the following figure for discharge points.

The information contained herein is the exclusive property of Tianma Microelectronics Co., Ltd., and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of Tianma Microelectronics Co., Ltd..

9 Mechanical Drawing

9.1 Mechanical Drawing Of LCM

9.2 Markings

The marking is attached to this product. **9.2.1 Nameplate label**

9.2.2 Barcode label

Barcode label

Note1: Do not attach anything like another label on the nameplate label!

10 Packing Drawing

Parameter	Inner packing box	Unit
Size	$T.B.D.(W) \times T.B.D.(H) \times T.B.D.(D)$ (typ.)	mm
Weight	T.B.D. (typ.)	kg
Total weight	T.B.D. (typ.) (with T.B.D. products)	kg

The information contained herein is the exclusive property of Tianma Microelectronics Co., Ltd., and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of Tianma Microelectronics Co., Ltd..

10.1 LCD Module Packing Method

MTIANMA

10.2 Stacking method (T.B.D.×T.B.D.×T.B.D.)

The information contained herein is the exclusive property of Tianma Microelectronics Co., Ltd., and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of Tianma Microelectronics Co., Ltd..

11 Precautions For Use of LCD Modules

11.1 Handling Precautions

- 11.1.1 The display panel is made of glass. Do not subject it to a mechanical shock by dropping it from a high place, etc.
- 11.1.2 If the display panel is damaged and the liquid crystal substance inside it leaks out, be sure not to get any in your mouth, if the substance comes into contact with your skin or clothes, promptly wash it off using soap and water.

11.1.3 Do not apply excessive force to the display surface or the adjoining areas since this may cause the color tone to vary.

11.1.4 The polarizer covering the display surface of the LCD module is soft and easily scratched. Handle this polarizer carefully.

- 11.1.5 If the display surface is contaminated, breathe on the surface and gently wipe it with a soft dry cloth. If still not completely clear, moisten cloth with one of the following solvents:
 - Isopropyl alcohol
 - Ethyl alcohol

Solvents other than those mentioned above may damage the polarizer. Especially, do not use the following:

- Water
- Ketone
- Aromatic solvents

11.1.6 Do not attempt to disassemble the LCD Module.

- 11.1.7 If the logic circuit power is off, do not apply the input signals.
- 11.1.8 To prevent destruction of the elements by static electricity, be careful to maintain an optimum work environment.
- 11.1.8.1 Be sure to ground the body when handling the LCD Modules.
- 11.1.8.2 Tools required for assembly, such as soldering irons, must be properly ground.
- 11.1.8.3 To reduce the amount of static electricity generated, do not conduct assembly and other work under dry conditions.
- 11.1.8.4 The LCD Module is coated with a film to protect the display surface. Be care when peeling off this protective film since static electricity may be generated.
- 11.1.9 The torque for product mounting screws must never exceed (0.8) N·m. Higher torque might

result in distortion of the bezel. And the length of product mounting screws must be \leq (7) mm.

11.2 Storage Precautions

11.2.1 When storing the LCD modules, avoid exposure to direct sunlight or to the light of fluorescent lamps.

11.2.2 The LCD modules should be stored under the storage temperature range. If the LCD modules will be stored for a long time, the recommend condition is:

Temperature : 0° C $\sim 40^{\circ}$ C Relatively humidity: $\leq 80\%$

11.2.3 The LCD modules should be stored in the room without acid, alkali and harmful gas.

11.3 Transportation Precautions

The LCD modules should be no falling and violent shocking during transportation, and also should avoid excessive press, water, damp and sunshine.