

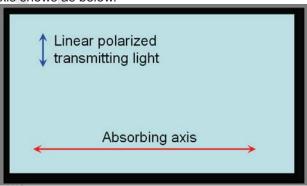
1/16

A. General Description

C101UAN01.0 is an a-Si type Thin Film Transistor Liquid crystal Display (TFT-LCD) with AHVA (Advanced Hyper-Viewing Angle) technology. This model is composed of a TFT-LCD, driver ICs, FPCs, FPCA, backlight unit, and touch panel.

B. Features

- 10.1" display
- 1920 x 1200 resolution in RGB stripe dot arrangement
- High brightness
- Interfaces: LVDS (8 bit, JEIDA/VESA, DE mode)
- AHVA wide view technology RoHs compliance


C. Physical Specifications

1. TFT LCD Panel

			I. IFI LODE	ancı
NO.	Item	Unit	Specification	Remark
1	Display Resolution	dot	1920 RGB (H) x 1200 (V)	
2	Active Area	mm	217.44 (H) x 135.9 (V)	
3	Screen Size	inch	inch 10.1 (Diagonal)	
4	Dot Pitch	μm	113.25	
5	Color Configuration	-	R. G. B. Stripe	
6	Color Depth	_	16.7M colors	
7	Overall Dimension	mm	236.96 (H) x 163 (V) x 8 (T)	Note. 1
8	Weight	g	425 g +/- 10%	
9	Display Mode	-	Normally Black	Note. 2

Note 1: FPC, PCBA, and screw bosses aren't included. 2D drawing is shown in Page 9.

Note 2: Transmission axis shows as below.

2/16

TFT-LCD Module Electrical Specifications TFT LCD Panel Pin Assignment

Rec	Recommended Connector: FH41-60S-0.5SHED					
No.	Pin Name	I/O	Description	Remarks		
1	NC	-	NC			
2	NC	-	NC			
3	LVFMT		LVDS format selection LVFMT = "H": VESA format LVFMT = "L": JEIDA format	Note 1		
4	GND	G	Power Ground			
5	GND	G	Power Ground			
6	GND	G	Power Ground			
7	NC	-	NC			
8	VDD	I	3.3 V power supply			
9	VDD	I	3.3 V power supply			
10	VDD	I	3.3 V power supply			
11	NC	-	NC			
12	NC	I	AUO internal use			
13	NC	I	AUO internal use			
14	TP_SYNC	-	For TP used (output = HSYNC) Keep floating if no use in system side.			
15	SDA	I	Serial communication data input. (System side: pull High) Keep floating if no use in system side.			
16	NC	-	No Connect			
17	SCL	I	Serial communication clock input. (System side: pull High) Keep floating if no use in system side.			
18	IND_OUT	0	Abnormal signal detection Combine the source driver & gate driver detection result AB_IND="H",IC is at normal operation AB_IND="L",IC is at abnormal states	Note 2		
19	NC	-	NC			
20	NC	-	NC			
21	NC	-	NC			
22	GND		Power Ground			
23	GND		Power Ground			
24	GND		Power Ground			
25	D13P		Positive LVDS differential input (Even)			
26	D13N		Negative LVDS differential input (Even)			
27	GND		Power Ground			
28	CLK1P		Positive LVDS differential clock input (Even)			

3/16

29	CLK1N	Negative LVDS differential clock input (Even)	
30	GND	Power Ground	
31	D12P	Positive LVDS differential input (Even)	
32	D12N	Negative LVDS differential input (Even)	
33	GND	Power Ground	
34	D11P	Positive LVDS differential input (Even)	
35	D11N	Negative LVDS differential input (Even)	
36	GND	Power Ground	
37	D10P	Positive LVDS differential input (Even)	
38	D10N	Negative LVDS differential input (Even)	
39	GND	Power Ground	
40	D03P	Positive LVDS differential input (Odd)	
41	D03N	Negative LVDS differential input (Odd)	
42	GND	Power Ground	
43	CLK0P	Positive LVDS differential clock input (Odd)	
44	CLK0N	Negative LVDS differential clock input (Odd)	
45	GND	Power Ground	
46	D02P	Positive LVDS differential input (Odd)	
47	D02N	Negative LVDS differential input (Odd)	
48	GND	Power Ground	
49	D01P	Positive LVDS differential input (Odd)	
50	D01N	Negative LVDS differential input (Odd)	
51	GND	Power Ground	
52	D00P	Positive LVDS differential input (Odd)	
53	D00N	Negative LVDS differential input (Odd)	
54	GND	Power Ground	
55	SHLR	Horizontal scan direction control	Note 3
56	UPDN	Vertical scan direction control	Note 4
57	GND	Power Ground	
58	NC	NC	
59	GND	Power Ground	
60	GND	Power Ground	

Note 1:

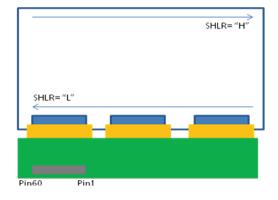
LVFMT = "H": VESA forma (Default); LVFMT = "L": JEIDA format.

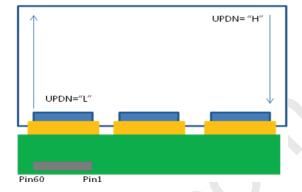
Note 2:

IND_OUT = "L": Abnormal states; IND_OUT = "H": Normal operation. (If no used keep floating).

Note 3:

SHLR = "H": Normal scanning (left-to-right) (Default); SHLR = "L": Invert horizontal scanning (right-to-left). ALL RIGHTS STRICTLY RESERVED. ANY PORTION OF THIS PAPER SHALL NOT BE REPRODUCED, COPIED, OR TRANSFORMED TO ANY OTHER FORMS WITHOUT PERMISSION FROM AU OPTRONICS CORP.





4/16

Note 4:

UPDN = "H": Normal scanning (up-down) (Default); UPDN = "L": Invert vertical scanning (down-to-up).

5/16

Differential Input Data Format VESA format

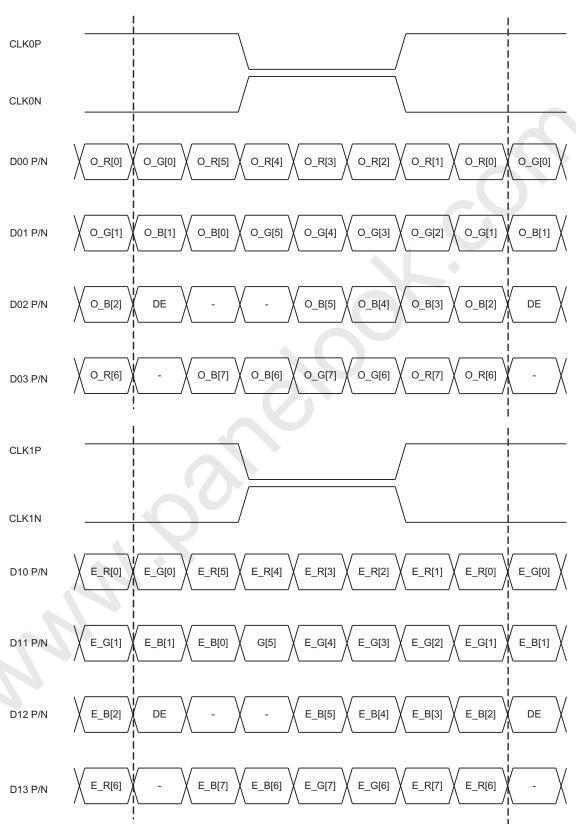


Fig. 1. LVDS input data VESA format

6/16

JEIDA format

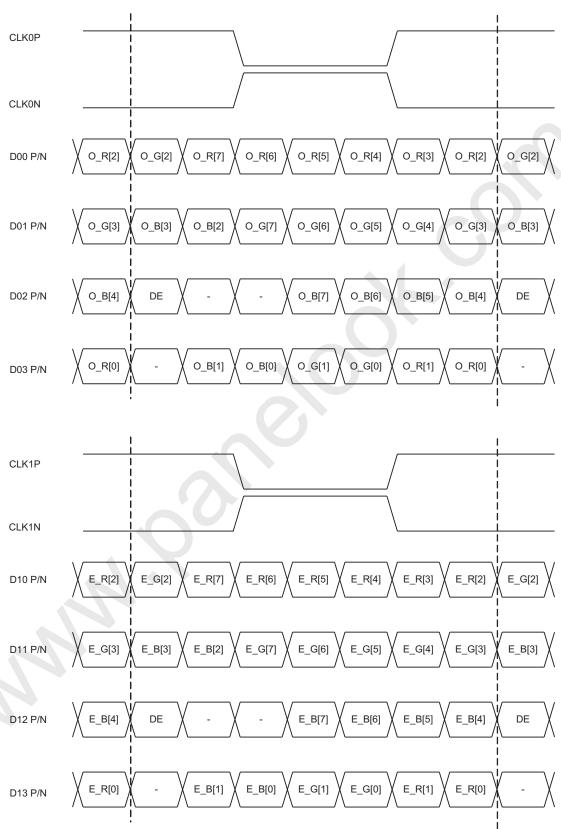
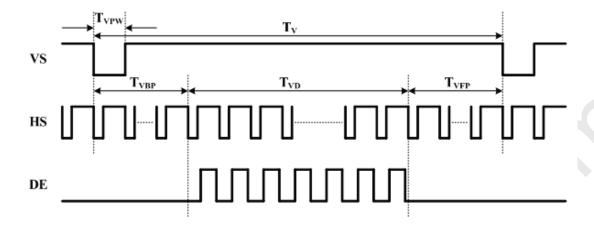
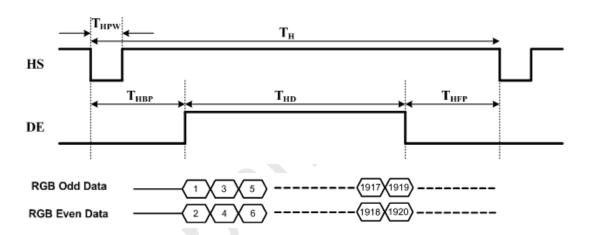


Fig. 2. LVDS input data JEIDA format




Global LCD Panel Exchange Center

Ver. 1.0

7/16

Input Timing Diagram

a. DE mode timing (Note 1)

	Parameter	Symbol	Min.	Тур.	Max.	Unit.	Remark
CLK Fre	equency	F _{CLK}	73.9	74.2	85	MHz	
	Period	Тн	1020	1024	1120	CLK	
HSYNC	Horizontal display area	T _{HD}	960			CLK	
	Blanking	T _{HBP} + T _{HFP}	60	64	160	CLK	
	Period	T _V	1206	1208	1265	HS	
VSYNC	Vertical display area	T _{VD}		1200		HS	
	Blanking	T _{VBP} + T _{VFP}	6	8	65	HS	

Note 1: Both two ports of LVDS need to follow this timing chart

8/16

Absolute Maximum Ratings

Items	Symbol	Val	ues	Unit	Condition
items	Syllibol	Min.	Max.	Ollit	Condition
Power Voltage	VDD	-0.3	5	V	GND = 0 V
Input signal voltage	Vi	-0.3	VDD		
Operation Temperature	Тора	-30*	85	°C	Ambient
Storage Temperature	Tstg	-40	95	°C	Ambient

Note 1: Functional operation should be restricted under normal ambient temperature.

Note 2: *No permanent functional defect between -40 °C and -30 °C

DC Electrical Characteristics

The following items are measured under stable condition and suggested application circuit.

b. Power specification

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Power Supply	VDD	3	3.3	3.6	V	Note 1
	IVDD		500	700	mA	Note 1
	IVDD inrush current			1.2	А	

Note 1: Test pattern is the following picture.

Fig. 3. Test pattern for power specification

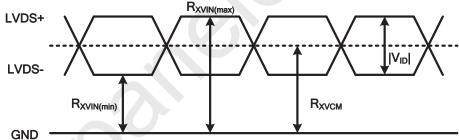
Global LCD Panel Exchange Center

Ver. 1.0

9/16

Signal DC electrical characteristics

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Input high level voltage	VIH	0.7VDD	-	VDD	V	Note 1
Input low level voltage	VIL	GND	-	0.6	V	Note 1
Output high level voltage	Vон	VDD - 0.4	-	VDD	V	Note 1
Output low level voltage	Vol	GND	-	0.4V	V	Note 1
Differential input high threshold	R _{XVTH}	-	-	0.1	V	Note 2.3
Differential input low threshold	Rxvtl	-0.1	-	-	>	Note 2.3
Input differential voltage	V _{ID}	0.2	-	(1.5 - R _{XVCM})*2	V	Note 2.3
Differential Input Common Mode Voltage	Rxvcм	1	1.2	1.4	V	Note 2.3


TTL interface signal DC characteristics

Note 3: LVDS interface signal DC characteristic

Note 4: The VID of transceiver suggest up to +/-400mV, this is better solution for receivers at high

speed transmission

Single-end Signal

Differential Signal

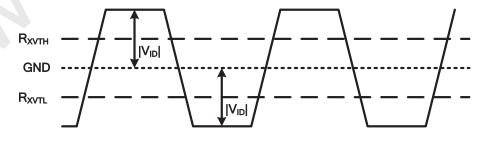


Fig. 4. LVDS DC characteristics diagram

10/16

AC Electrical Characteristics

c. Input AC characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Remark
VDD power on slew time	T _{POR}	1	-	20	ms	From 0V to 90% VDD Note 1

Note 1: The inrush current spec should follow VDD power on slew time which min value is 1 ms and max value is 20 ms. Inrush current may be out of spec.

Fig. 6. VDD timing diagram

d. Repower ON / OFF

Parameter			Unit	
	Min.	Тур.	Max.	Offic
T1	1000	1	-	ms

Note: VDD voltage must be less than 0.1V then can power on without following the minimum value.

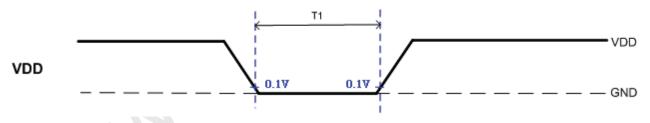


Fig. 7. VDD timing diagram

11/16

e. Differential signal AC characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Remark
Clock frequency	R _{xFCLK}	73.9	74.2	85	MHz	
Clock high time	T _{LVCH}	-	4/(7*T _{LVCLK})	-	ns	
Clock low time	T _{LVCL}	ı	3/(7*T _{LVCLK})	-	ns	
Input data skew margin	T _{RSKM}	-	-	0.25	UI	VCC_IF=1.8V w/o SSC
1 Data bit time	UI	-	1/7	-	T _{LVCLK}	

Note 1: For the Data Skew Margin, "Input Signal Skew + Input Signal Jitter" must be smaller than TRSKM.

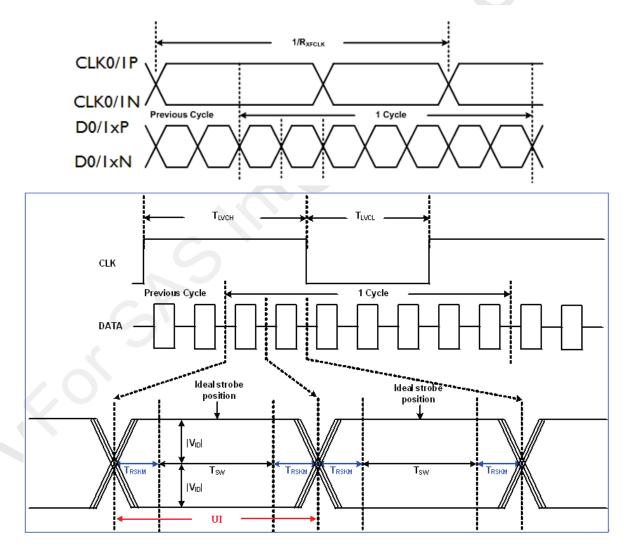
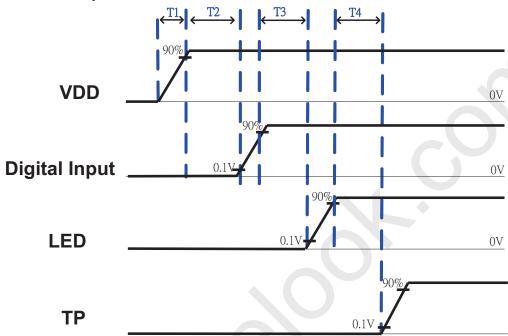


Fig. 8 LVDS AC characteristics diagram

Global LCD Panel Exchange Center


Ver. 1.0

12/16

Power On/Off Sequence

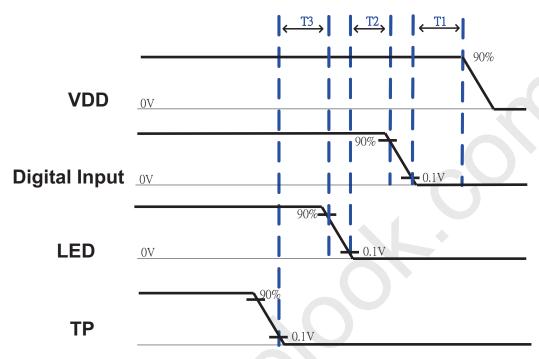
The LCD adopts high voltage driver IC, so it could be permanently damaged under a wrong power on/off sequence. The suggested LCD power sequence is below:

f. Power on sequence

Power on timing:

Parameter	Value					
	Min.	Тур.	Max.	Units		
T1	1		20	ms		
T2	1			ms		
Т3	160			ms		
T4	120			ms		

Note: Digital Input are LVFMT, SHLR, UPDN and LVDS signals.



13/16

Power off sequence

Power off timing

Parameter	Value					
	Min.	Тур.	Max.	Units		
T1	16.67			ms		
T2	35			ms		
Т3	20			ms		

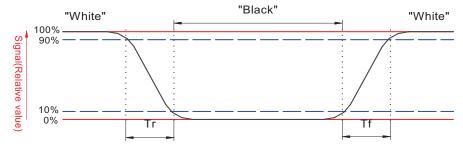
14/16

Optical Specifications (Note 1, 2)

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Remark	
Response Time (25°C)	Tr+ Tf	θ = 0°	-	-	25	ms	Note 2. 4	
Response Time (-30°C)	Tr+ Tf	θ = 0°	-	-	350	ms	Note 3, 4	
Contrast ratio	CR	θ = 0°	1100	1500	-		Note 4, 5, 6	
Viewing Angle Top Bottom Left Right		$\theta = 80^{\circ}, \Phi = 90^{\circ}$ $\theta = 80^{\circ}, \Phi = 270^{\circ}$ $\theta = 80^{\circ}, \Phi = 180^{\circ}$ $\theta = 80^{\circ}, \Phi = 0^{\circ}$	CR ≥ 10	-	S	deg.	Note 5, 6, 7, 9	
Brightness	YL	θ = 0°	1100	1400	^ -	cd/m ²	Note 1, 2, 8	
White Chromaticity	Х	θ = 0°	0.274	0.304	0.334		Note 9	
	Υ	θ = 0°	0.287	0.317	0.347			
Red Chromaticity	Х	$\theta = 0^{\circ}$	0.634	0.664	0.694			
	Υ	$\theta = 0^{\circ}$	0.281	0.311	0.341			
Green Chromaticity	Х	$\theta = 0^{\circ}$	0.267	0.297	0.327			
	Υ	$\theta = 0^{\circ}$	0.630	0.660	0.690			
Blue Chromaticity	Х	θ = 0°	0.119	0.149	0.179			
	Υ	θ=0°	0.031	0.061	0.091			
NTSC Ratio	1 - *	-	80	85	-	%		
Uniformity of white	-	-	80	-	-	%	Note 10	

Note 1: Measurement should be performed in the dark room, optical ambient temperature = 25 °C

Note 2: To be measured in the center area of TFT-LCD with a field angle of 1° by Topcon luminance meter SR3, after 10 minutes operation and warm up 30 minutes.

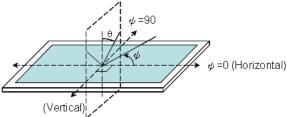

Note 3: Definition of response time:

The output signals of photo detector are measured when the input signals are changed from "black state" to "white state" (falling time) and from "white state" to "black state" (rising time), respectively.

15/16

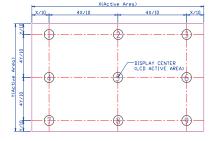
Note 4: Based on liquid crystal characteristics, the response time will become slower and the color of panel will become darker than the above optical specification when ambient temperature is below 25 °C.

Photo detector output when LCD is at "White" state Contrastratio = Photo detector output when LCD is at "Black" state


Note 5: Contrast ratio is calculated with the following formula.

White: RGB data = "111111111" (V1 = 12.4 V & V18 = 0.6 V) White:

Black : RGB data = "00000000" (V9 = 6.9 V & V10 = 6.1 V)


The 100% transmission is defined as the transmission of LCD panel when all the input terminals of module are electrically opened

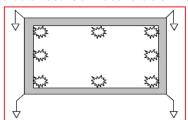
Note 6: Definition of viewing angle: refer to figure as below.

- Note 7: Viewing angles are measured at the center of the panel when all the input terminals of LCD oanel are electrically opened.
- Note 8: Brightness is measured at the center of the display.
- Note 9: The viewing angles are measured at the center area of the panel when all the input terminals of LCD panel are electrically opened. If user finds that display is out of color range, AUO will proceed to RMA (Return Material Authorisation) process to exchange panel piece by piece without the failure rate counting.

Note 10: Luminance Uniformity of these 9 points is defined as below: (1:4:4:1)

minimum luminance in 9 points (1-9) maximum luminance in 9 points (1-9) Uniformity =

16/16


G. Reliability Test Items (Note 1 ~ 7)

No.	Test items	Con	Remark			
1	High temperature storage			240 Hrs		
2	Low temperature storage	Ta= -40 °C		240 Hrs		
3	Low temperature operation	Ta= -30 °C		240 Hrs		
4	High temperature operation	Ta= 85 °C		240 Hrs	Note 5,6	
5	High temperature and high humidity	Ta= 65 °C, 90 % RH		240 Hrs	Note 5,6	
6	Thermal Shock	-40 °C (30min) ~ 85 °C (30min) / 632 cycles 1 Hrs/cycle		Note 5,6		
7	Power Temperature Cycling	-30 °C ~ 85 °C /	Note 5,6			
8	Humid Heat Cyclic	-10 °C /+65 °C, 93% 10 day		ays (240h)	Note 5,6	
9	Shock	100 G, 6 n 3 times for	(Note 6)			
10	Electrostatic Discharge	Contact = ± 8 kV, 1 sec, 8 (R = 330 C Air = ± 15 kV, 1 sec, class B (R = 3	IEC61000-4-2 (note 4,6)			
11		Frequency range		8 ~ 33.3 Hz		
		Stoke		1.3 mm		
	Vibration	Sweep	2.9 (G, 33.3 ~ 400Hz	JIS D1601,A10 Condition A (Note 6)	
		Cycle		15 min.		
		2 hours for eac 4 hours fo				
12	Vibration (with carton)	Randor 0.015 G ² /Hz –6 dB/Octave f	IEC 68-34			
13	Drop (with carton)	Heigh 1 corner, 3 e				

Note 1: Test techniques follow IEC61000-4-2 standard. Class B – Some performance degradation allowed.

1 corner, 3 edges, 6 surfaces

No data lost. Self-recoverable. No hardware failures.

