

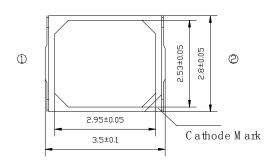
SOW2835-PL-R660-B Datasheet

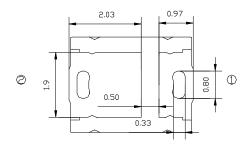
This 2835 LED Light Source is a high performance energy efficient device which can handle high thermal and high driving current. The small package outline and high intensity make it an ideal choice for LED panel light, LED bulb light, LED tube light and etc.

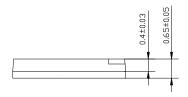
This part has a foot print that is compatible to most of the same size LED in the market today.

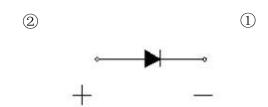
FEATURES

- High luminous Intensity and high efficiency
- Compatible with reflow soldering process
- Low thermal resistance
- Long operation life
- Wide viewing angle at 120°
- Silicone encapsulation
- Environmental friendly, RoHS compliance

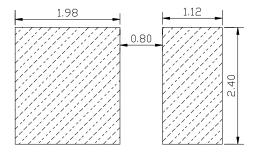

APPLICATIONS


- Flat panel light
- LED tube light
- LED bulb light
- Plant grow light


Note: The information in this document is subject to change without notice.



PACKAGE DIMENSIONS



Recommended Solder Pad Design

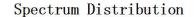
- 1. All dimensions in millimeters.
- 2. Thickness tolerance of copper plate is ± 0.02 mm.
- 3. Thickness tolerance of product is ± 0.05 mm.
- 4. Tolerance is ± 0.1 mm unless otherwise noted.

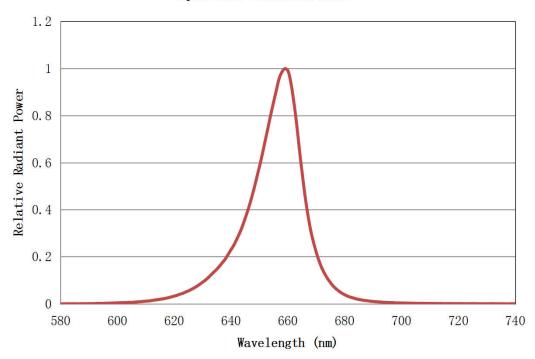
ABSOLUTE MAXIMUM RATINGS

Item	Symbol	Absolute Maximum Rating	Unit
Forward current	$\mathtt{I}_{\mathtt{F}}$	500	mA
Peak Forward Current ^[1]	${ m I}_{ extsf{FP}}$	1000	mA
Reverse Voltage	V_R	10	V
Power Dissipation	Pd	1200	mW
Operating Temperature	T_{opr}	$-40^{\sim}+85$	$^{\circ}\! \mathbb{C}$
Storage Temperature	T_{stg}	-40^{\sim} $+100$	${\mathbb C}$
Soldering Temperature	T_{sld}	Reflow Soldering: 260℃ seconds	for 10
LED Junction Temperature	$T_{ m j}$	115	$^{\circ}\!\mathbb{C}$

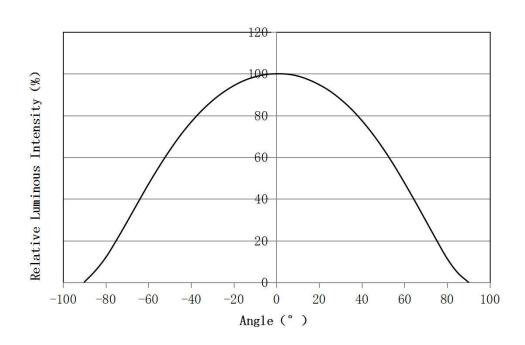
Note:

 I_{FP} Conditions: Pulse Width ≤ 10 msec. and Duty $\leq 1/10$.

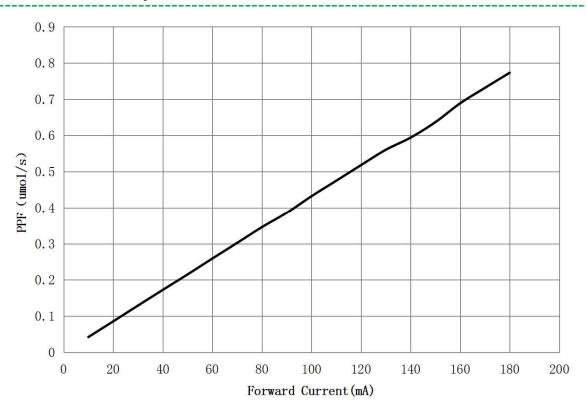

CHARACTERISTICS (Tj=25 $^{\circ}$)


Parameter	Symbol	Condition	Min	Тур	Max	Unit
Forward Voltage ^[1]	V_{F}	$I_F\!\!=\!\!150\text{mA}$	1.8		2.4	V
Viewing Angle	2 θ $_{1/2}$	$I_{F}\!\!=\!\!150\text{mA}$		120		deg.
Radiometric Power	Φе	$I_F\!\!=\!\!150\text{mA}$	100		140	mW
Peak Wavelength	Wp	$I_{F}\!\!=\!\!150\text{mA}$	655		665	nm
Thermal Resistance (Junction to Solder Point)	$R_{\rm th-js}$	$\rm I_F{=}150mA$		25		°C/W

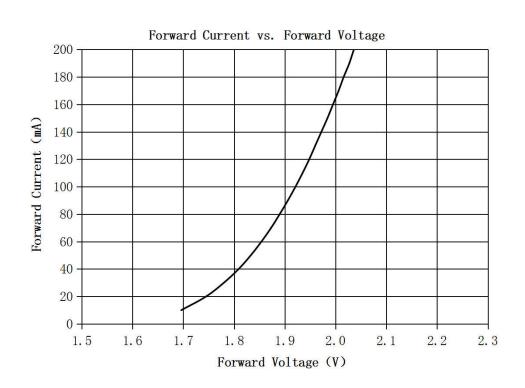
- 1. Luminous flux is measured with an accuracy of \pm 10%.
- 2. Chromaticity coordinate bins are measured with an accuracy of \pm 0.01.
- 3. CRI is measured with an accuracy of \pm 2.
- 4. Some color and CRI bins may have limited availability, please contact us before ordering.
- 5. All measurements were made under the standardized environment of Shineon



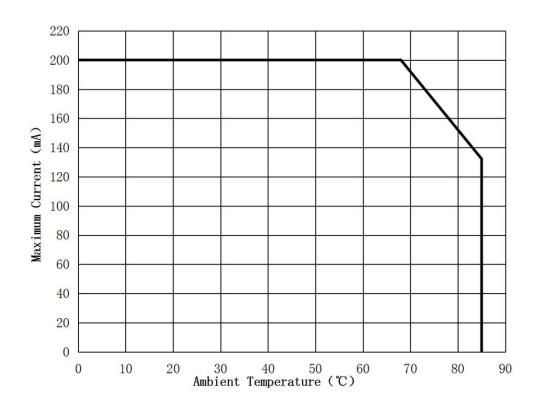
RELATIVE SPECTRAL POWER DISTRIBUTION ($T_j = 25^{\circ}$)



TYPICAL SPATIAL DISTRIBUTION



PPFVS. CURRENT ($T_j = 25^{\circ}$)



ELECTRICAL CHARACTERISTICS (Tj=25℃)



MAXIUM CURRENT VS. AMBIENT TEMPERATURE

RELATIVE RADIANT FLUX VS. JUNCTION TEMPERATURE

SOW2835-PL-R660-B LEDs

SORTING RANKS

(1) Radiometric Power (Tj=25℃)

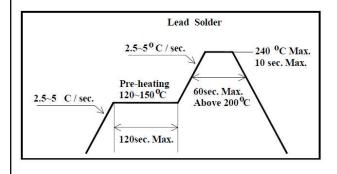
Part Number	Condition	Rank		Unit
S0W2835-PL-R660-B	150mA	QA	QB	mW
		100-120	120-140	

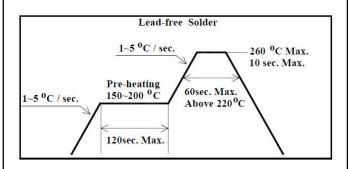
(2) Forward Voltage (Tj=25℃)

Rank	Condition	Min.	Max.	Unit
TE		1.8	2. 0	
AA	150mA	2. 0	2. 2	V
AB		2. 2	2. 4	

- 1. 10% tolerance for luminous intensity may be caused by measurement inaccuracy.
- 2. Measurement Uncertainty of the Forward Voltage : $\pm 0.1V$

REFLOW SOLDERING CHARACTERISTICS

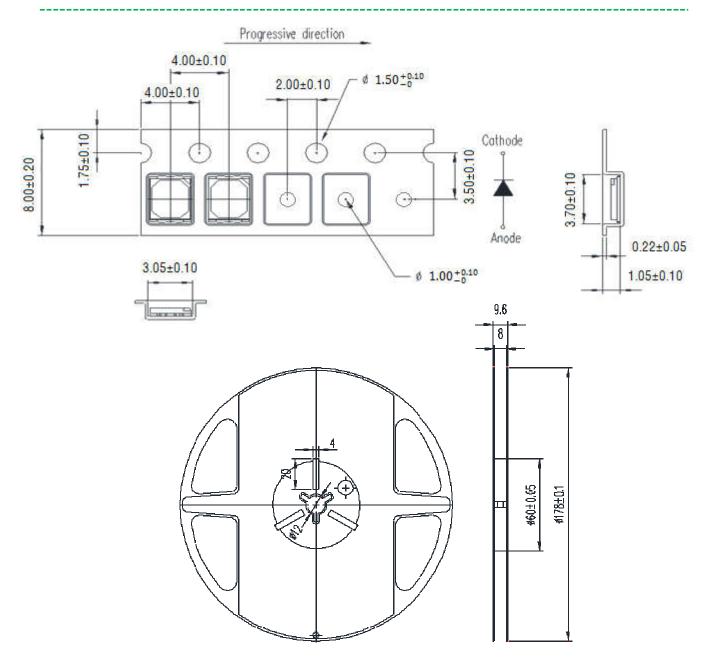

For Reflow Process:


Preheating: $140^{\circ}\text{C} \sim 160^{\circ}\text{C} \pm 5^{\circ}\text{C}$, within 2 minutes.

Operation heating: 260°C (Max.) within 10 seconds.(Max)

Gradual Cooling (Avoid quenching).

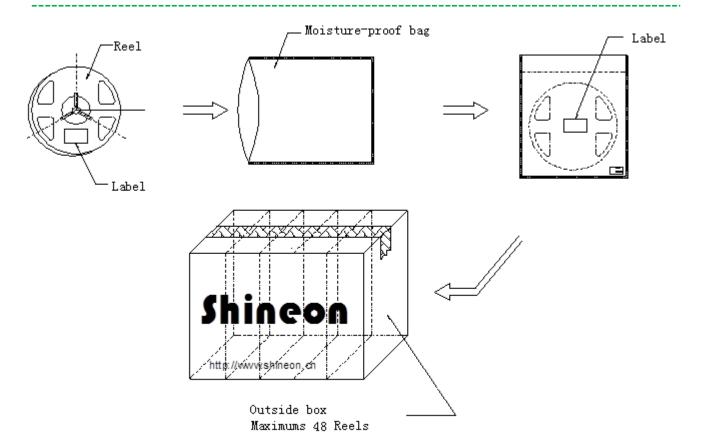
Lead solder		Lead-free solder		
Pre-heat	120-150℃	Pre-heat	150-200°C	
Pre-heat time	120 sec.Max.	Pre-heat time	120 sec.Max.	
Peak Temperature	240℃ Max.	Peak Temperature	260°C Max.	
Soldering time condition	10 sec.Max.	Soldering time condition	10 sec.Max.	



Notes:

The encapsulated material of the LEDs is silicone. Therefore the LEDs have a soft surface on the top of package. The pressure to the top surface will be influence to the reliability of the LEDs. Precautions should be taken to avoid the strong pressure on the encapsulated part. So when using the picking up nozzle, the pressure on the silicone resin should be proper.

TAPE AND REEL


Note: The tolerances unless mentioned is ±0.1mm, Unit=mm

- (1) Quantity: 3,500pcs/Reel
- (2) Cumulative Tolerance : Cumulative Tolerance/10 pitches to be ± 0.2 mm
- (3) Adhesion Strength of Cover Tape : Adhesion strength to be 0.1-0.7N when the cover tape is turned off from the carrier tape at the angle of 10° to the carrier tape
- (4) Package: P/N, Manufacturing data Code No. and quantity to be indicated on a damp proof Package.

SOW2835-PL-R660-B LEDs

PACKAGING

SOW2835-PL-R660-B LEDs

PRECAUTION FOR USE

- (1) This device should not be used in any type of fluid such as water, oil, organic solvent, etc. When washing is required, IPA should be used.
- (2) When the LEDs are illuminating, operating current should be decided after considering the ambient maximum temperature.
- (3) LEDs must be stored to maintain a clean atmosphere. If the LEDs are stored for 3months or more after being shipped from ShineOn, a sealed container with a nitrogen atmosphere should be used for storage.
- (4) The LEDs must be used within four weeks after opening the moisture proof packing. Repack unused Products with anti-moisture packing, fold to close any opening and then store in a dry place.
- (5) The appearance and specifications of the product may be modified for improvement without notice.
- (6) This LED is sensitive to the static electricity and surge. It is recommended to use a wrist Band or anti-electrostatic glove when handling the LEDs.
- (7) On manual soldering, a solder tip must be needed as grounded for usage. If over voltage which exceeds the absolute maximum rating is applied to LEDs, it will cause damage LEDs and result in destruction. Damaged LEDs will show some unusual characteristics such as leak current remarkably increase ,turn-on voltage becomes lower and the LEDs get unlighted at low current.