SPECIFICATION

Product : Programable LED Driver

Model Name: CVT120 - xxxx...xxx

(xxxx...xxx : target LCD part number)

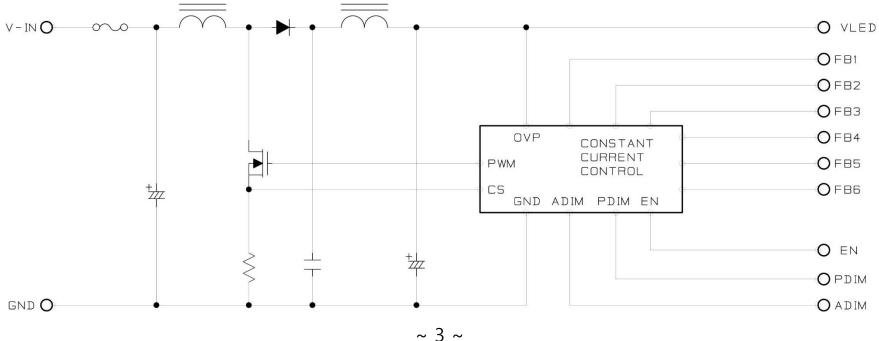
Supportable Dimming: External PWM and Analog

August 2019

Revision History

Rev.	Date	Revision Details	Remarks
A	Oct 16, 2018	Engineering Sample Issue	
В	Mar 18, 2019	Initial version start (the first product model)	
С	Apr 01, 2019	The second Production start	
	Apr 30, 2019	The addition of MTBF data	

1. **DESIGN CONCEPT OF PRODUCT**


This product has been designed for providing an easiest way of suitable LED driver adoption based on a fixed a hardware model which can be applicable for various TFT LCD Modules.

In order to overcome the difficulty from too many different hardware supply in every time when all users need to drive a target LCD panel, this product allow to settle the key parameters of LCD backlight LED rail through a program which can settle below parameters;

- the number of LED Channel,
- the level of current on each LED string a
- the adoptable Voltage level as the OVP (Over Voltage Protection).

This model has max 6 channel supportable and 630mA level current supportable, Further details about users' manual will guide how to use this product, refer to the attached Appendix.

2. **BLOCK DIAGRAM**

3. **ELECTRICAL PARAMETERS**

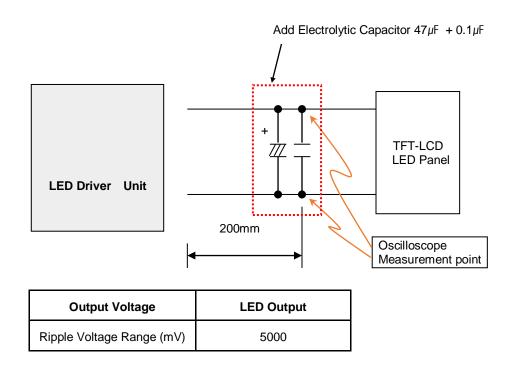
3.1 Input Requirements

	Doromotor				Values		1.1	Remark	
Parameter			Symbol	Min	Тур	Max	Unit		
Dawar Cupply Input Valtage			VBL	10.8	12	18	Vdc	** 1	
Power Su	Power Supply Input Voltage			18	24	29	Vdc	l	
Device Overale leaved Overage			IBL	ı	ı	2.1	Α	VBL = 12V Ext VBR-B =100%	
Fower Su	Power Supply Input Current		IBL	-	-	1.0	Α	VBL = 24V Ext VBR-B =100%	
Power Supply	Power Supply Input Current (In-rush)		In-rush	-	ı	6	Α	VBL = 10.8V Ext VBR-B =100%	
Power	Power Consumption		PBL	-	-	23	W		
	On/Off	On	V on	2.4	-	5.25	Vdc		
		Off	V off	-0.3	ı	0.8	Vdc		
	Brightness Adjust		ExtVBR-B	3	ı	100	%	On Duty ** 2	
Input Voltage for Control	jl		High Level	2.4	1	5.25	Vdc		
System Signals			Low Level	0.0	-	0.7	Vdc	HIGH : On duty	
			PWM Freq.	100		240	Hz	LOW : Off duty ** 2	
			Duty	2	-	100	%		
			A-DIM	0	-	3	V	0V : Min Bright 3V :Max Bright	

^{** 1)} The LED string voltage always has to be higher than the input voltage (max) and the difference must be at least 5V deviation.

** 2) To use PWM duty less than 10%, the frequency of dimming should be 120Hz or less

3.2 Output Requirements


3.2.1 Maximum Output Voltage and Current

Voltage	Constant Current Channel		Maximum	Output Constant Current per channel (mA)			Total Output Constant Current (mA)		
	Range		Wattage	Min.	Тур.	Max.	Min.	Тур.	Max.
OUTPUT	15V ~ 60V	1Ch ~ 6Ch	23W under	10	1	630	30	-	630

· The voltage and current per LD Backlight string are set according to the LCD demand

3.2.2 Ripple and Noise

The ripple and noise are defined as a periodic or random signal over frequency band at the 10Hz ~ 20MHz, measuring by an oscilloscope capable 20MHz bandwidth.

* The ripple & noise are measured at the 20MHz bandwidth by a 12" twisted pair-wire which is cut off through the 0.1uF & 47uF parallel capacitor.

Test condition

- Temperature: 25°C room temperature- Test equipment: PWM Dimming 100%

3.2.3 Overshoot

The output overshoot at the boot up must not exceed 25% than ordinary operating voltage value whether it is under a loading condition or not.

3.2.4 Output Rise Time

At the moment of turning on, the rise time of output voltage has to be shorter than 200msec, which is measured from the 10% point to the 90% point at the optimal level

▼ Test condition

Temperature: 25°C room temperature
 Test equipment: Resistance load

3.3 Power Output Protection

3.3.1 Over Voltage Protection (OVP)

The voltage will not exceed the upper trip limit.

The noise spikes (exceeding the trip limit smaller than 10 μ s) will not restrict the output voltage at zero level.

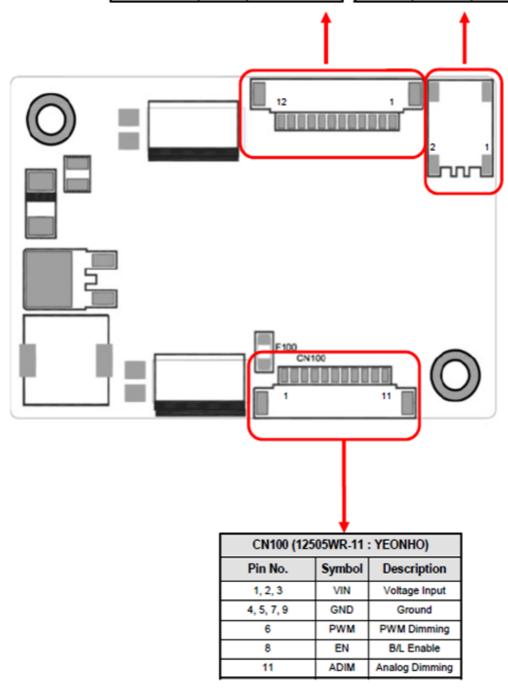
3.3.2 Specification of Protection

Voltage	Over Voltage Protection			
voitage	Range[V]	Protection		
OUTPUT	Set 10V higher than the string voltage of panels.	Shut Down		

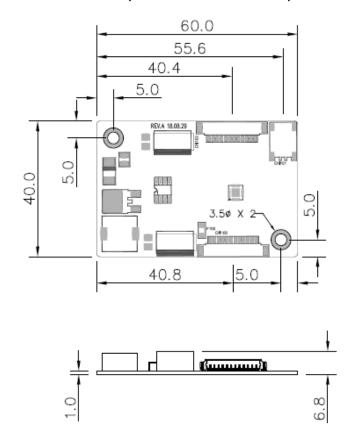
4. Absolute Raring

4.1 Temperature

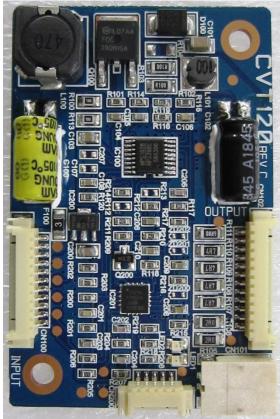
- Operating Temp. : $-35 \sim 85^{\circ}$ C (optional guarantee – up to -40°C) - Storage Temp. : $-35 \sim 85^{\circ}$ C (optional guarantee – up to -40°C)

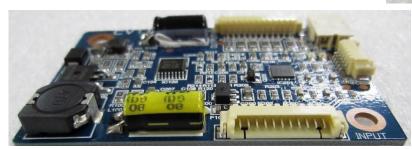

4.2 Humidity

Operation humidity
Storage humidity
20 ~ 85% non-condensate
5 ~ 95% non-condensate


5. Pin Information

CN102 (12505WR-12 : YEONHO)2						
Pin No. Symbol Description						
1	FB1	LED Cathode 1				
2	FB2	LED Cathode 2				
3	FB3	LED Cathode 3				
4	FB4	LED Cathode 4				
5	FB5	LED Cathode 5				
6	FB6	LED Cathode 6				
7, 8, 9, 10, 11, 12	VLED	LED Anode				


CN10135001WR-02A00 : YEONHO)						
Pin No. Symbol Description						
1	VLED	LED Anode				
2	FB1	LED Cathode 1				



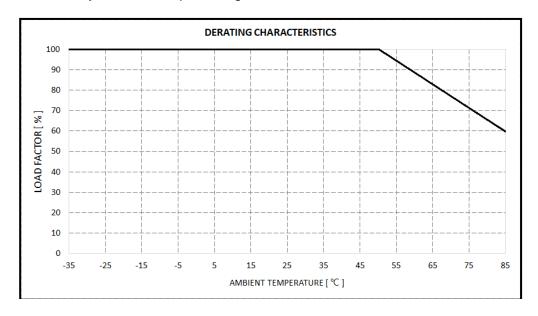
6. Dimension (60 x 40 mm x 6.8mm) and Pictures

7. RELIABILITY TEST

7.1 Environment Test

Adopted Test	Test method					
Intermittent Operating Stability Test	The electrical characteristics have to be passed this test under the none stop power "On" and "Off" during the 25,000 hours by the in every 10 seconds interval on the maximum load condition					
Low Temp. Operating Test	The test has to be done for 200 hours under – 30 degree Celsius condition and product has to meet the normal operation without any trouble for electronaracteristics					
High Temp. & High Humidity Operating Test	Humidity	he test has to be done for 200 hours under +85 degree Celsius and 85% relevant umidity condition and the product has to meet the normal operation without any ouble for electrical characteristics				
Low Temp. Storage Test	Then the	The test has to be done for 96 hours or more under – 35 degree Celsius condition. Then the switching regulator is left at the ambient temperature and humidity for 1 hour or more, consequently the product has to meet the normal operation without any trouble for electrical characteristics				
	tempera	ture and humidity for 1 ho	imes cycling condition like below unde ur or more. Then consequently the pro ut any trouble for electrical characterist	oduct has		
		Consecutive Cycle	Temperature			
		10 minutes	25℃			
		30 minutes	25°C → -35°C			
Heat cycle Operating Test		240 minutes	Minimum temperature(-35°C)			
		30 minutes	-35℃ → 25℃			
		10 minutes	25℃			
		30 minutes	25℃ → 85℃			
		240 minutes	Maximum temperature (85°C)			
		30 minutes	85°C → 25°C			
Vibration Test	The test has to be done for 2 hours or more under the Vibration amplitude at 1.5mm, Frequency at 10-5-10Hz, Sweep Time for 1 minute on the X, Y, Z direction each. Consequently there shall be no visual damage or inside characteristics.					
Appearance Test						

7.2 Mean Time Between Failure (MTBF)


The product has been designed by 50,000 MTBF with 90% reliability index under below conditions.

- Input voltage : 12Vdc

- Duty cycle : 6hours ON, 2hours OFF

- Ambient Temp : 25 ± 2°C

- Humidity : prevailing condition

It measured by Lambda Predict Program, "Reliasoft" made. And it calculates by the Telcordia SR-332 Issue 3

The MTBF : 281,830 hours

(refer to the calculation data on the page 11)

Name: LED DRIVER [CVT-120] Failure Rate(t=INF) (FITs): 7110.2452 Category: Telcordia SR-332 Issue 3

Category	Location No.	Failure Rate(t=INF) (FITs)	MTBF (hrs)	Contribution	Quantity
apacitor	C100	3548.2371	281,830	0.499	1
apacitor	C101	0.1944	5,144,600,000	2.73E-05	1
pacitor	C102	3120.1449	320,500	0.4388	1
pacitor	C103	0.165	6,061,400,000	2.32E-05	1
pacitor	C104	0.0769	13,008,000,000	1.08E-05	1
epacitor	C105	0.0169	59,237,000,000	2.37E-06	1
apacitor	C106	0.0169	59,237,000,000	2.37E-06	1
spacitor	C108	0.0375	26,658,000,000	5.28E-06	1
apacitor	C200	0.131	7,631,800,000	1.84E-05	1
apacitor	C201	0.0231	43,378,000,000	3.24E-06	1
spacitor	C202	0.0231	43,378,000,000	3.24E-06	1
pacitor	C203	0.0231	43,378,000,000	3.24E-06	1
spacitor	C204	0.0231	43,378,000,000	3.24E-06	1
spacitor	C205	0.017	58,995,000,000	2.38E-06	1
spacitor	C206	0.0551	18,151,000,000	7.75E-06	1
pactor	C208	0.0551	18,151,000,000	7.75E-06	i
pacitor	C209	0.0551	18,151,000,000	7.75E-06	1
pacitor	C210	0.0551	18,151,000,000	7.75E-06	1
nnector	CN100	0.9799	1,020,500,000	0.0001	1
nnector	CN101	0.9799	1,020,500,000	0.0001	1
nnector	CN102	0.9799	1,020,500,000	0.0001	1
nnector	CN200	0.9799	1,020,500,000	0.0001	1
ode	D100	119.7204	8,352,800	0.0168	1
ternal	F100	-	-	0	1
, Analog/Linear	IC100	34.7497	28,777,000	0.0049	1
, Analog/Linear	IC200	12.0648	82,886,000	0.0017	1
, Microcontroller	IC201	226.1077	4,422,700	0.0318	1
ductor	L100	2.2011	454,330,000	0.0003	1
ductor	L101	2.2011	454,330,000	0.0003	i
ternal	LED1	-	-	0.0003	1
ternal	LED2			0	1
	_	· ·			
ternal	PCB		-	0	1
ansistor	Q100	21.7259	46,028,000	0.0031	1
ransistor	Q200	12.2777	81,448,000	0.0017	1
esistor, Fixed	R100	0.1525	6,557,300,000	2.14E-05	1
esistor, Fixed	R101	0.1525	6,557,300,000	2.14E-05	1
esistor, Fixed	R102	0.1525	6,557,300,000	2.14E-05	1
esistor, Fixed	R103	0.1525	6,557,300,000	2.14E-05	1
esistor, Fixed	R105	0.1525	6,557,300,000	2.14E-05	1
esistor, Fixed	R106	0.1525	6,557,300,000	2.14E-05	1
esistor, Fixed	R107	0.1525	6,557,300,000	2.14E-05	1
esistor, Fixed	R108	0.1525	6,557,300,000	2.14E-05	1
esistor, Fixed	R109	0.2846	3,513,400,000	4.00E-05	1
esistor, Fixed	R110	0.1525	6,557,300,000	2.14E-05	1 1
esistor, Fixed	R111	0.1525	6,557,300,000	2.14E-05	1
esistor, Fixed	R113	0.1525	6,557,300,000	2.14E-05	1
esistor, Fixed	R114	0.1525	6,557,300,000	2.14E-05	1
sistor, Fixed	R115	0.1525	6,557,300,000	2.14E-05	1
esistor, Fixed	R116	0.1525	6,557,300,000	2.14E-05	1
esistor, Fixed	R117	0.1525	6,557,300,000	2.14E-05	1
sistor, Fixed	R118	0.1525	6,557,300,000	2.14E-05	1
esistor, Floed	R119	0.1525	6,557,300,000	2.14E-05	1
sistor, Fixed	R120	0.1525	6,557,300,000	2.14E-05	1
sistor, Fixed	R200	0.1525	6,557,300,000	2.14E-05	1
sistor, Fixed	R201	0.1525	6,557,300,000	2.14E-05	1
sistor, Fixed	R202	0.1525	6,557,300,000	2.14E-05	1
sistor, Fixed	R203	0.1525	6,557,300,000	2.14E-05	1
sistor, Fixed	R204	0.1525	6,557,300,000	2.14E-05	1
sistor, Fixed	R205	0.1525	6,557,300,000	2.14E-05	1
sistor, Fixed	R206	0.1525	6,557,300,000	2.14E-05	1
sistor, Fixed	R207	0.1525	6,557,300,000	2.14E-05	1
sistor, Fixed	R208	0.1525	6,557,300,000	2.14E-05	1
sistor, Fixed	R209	0.1525	6,557,300,000	2.14E-05	1
sistor, Fixed	R210	0.1525	6,557,300,000	2.14E-05	1
sistor, Fixed	R211	0.1525	6,557,300,000	2.14E-05	1
sistor, Fixed	R212	0.1525	6,557,300,000	2.14E-05	1
sistor, Fixed	R214	0.1525	6,557,300,000	2.14E-05	1
sistor, Fixed	R215	0.1525	6,557,300,000	2.14E-05	1
sistor, Fixed	R216	0.1525	6,557,300,000	2.14E-05	1
sistor, Fixed	R217	0.1525	6,557,300,000	2.14E-05	1
sistor, Fixed	R218	0.1525	6,557,300,000	2.14E-05	1
esistor, Fixed	R219	0.1525	6,557,300,000	2.14E-05	1