Approved by

TIANMA Confirmed:

Prepared by

Xiaohui.zhou

MODEL NO :

MODEL VERSION:			
SPEC VERSION:	1.0)	
ISSUED DATE:	2020-	09-29	
■Preliminar □Final Prod	-		
Customer :			
Approved by		Notes	S

P0700WVF1MA00

This technical specification is subjected to change without notice

Checked by

Table of Contents

Tab	ole of Contents	2
Red	cord of Revision	3
1	General Specifications	4
	Input/Output Terminals	
	Absolute Maximum Ratings	
4	Electrical Characteristics	
5	Timing Chart	10
6	Optical Characteristics	
7	Environmental / Reliability Test	
8	Mechanical Drawing	
9	Packing Drawing	18
10	Precautions for Use of LCD Modules	

Record of Revision

Rev	Issued Date	Description	Editor
1.0	2020-09-29	Preliminary release.	Xiaohui.zhou
			>
	ф.		

1 General Specifications

	Feature	Spec
	Size	7.0inch
	Resolution	800(RGB) x 480
	Technology Type	a-Si
Display Spec.	Pixel Configuration	R.G.B. Vertical Stripe
Display Spec.	Pixel pitch(mm)	0.1905 x0.1905
	Display Mode	Normally black (SFT)
	Surface Treatment	AG
	Viewing Direction	All
	LCM (W x H x D) (mm)	169.8x109.7 x10.87 (Max)
	Active Area(mm)	152.40 (W) x 91.44 (H)
Mechanical	With /Without TSP	Without
Characteristics	Matching Connection Type	CN1:FI-S20S or compatible CN2:SHLP-06V-S-B
	LED Numbers	14pcs (2P7S)
	Weight (g)	TBD
	Interface	1port LVDS, 6/8bit selectable
Electrical	Color Depth	16.7M
Characteristics	Driver IC	Source IC: RM53350_3112 Gate IC: RM57750_3110

Note 1: Viewing direction for best image quality is different from TFT definition. There is a 180 degree shift.

Note 2: Requirements on Environmental Protection: Q/S0002

Note 3: LCM weight tolerance: ± 5%

4

LED A1

2 Input/Output Terminals

TFT Connector CN1: Connector type: JAE FI-SEB20P-HFE

Matching Connector:FI-S20S or compatible

BLU Connector CN2: Connector type:SM06B-SHLS-TF(LF)(SN)
Matching Connector:SHLP-06V-S-B PIN

Pin **Symbol** I/O Remark **Function** No. CN1 1 VCC Power supply(+3.3V) 2 VCC Р Power supply(+3.3V) 3 GND Р Ground Ground 4 **GND** Link0--LVDS differential data input(R0~R5,G0) 5 6 Link0+ +LVDS differential data input(R0~R5,G0) GND Р Ground 7 8 Link1--LVDS differential data input(G1~G5,B0~B1) +LVDS differential data input(G1~G5,B0~B1) Link1+ 9 Р GND 10 Ground 11 Link2--LVDS differential data input(B2~B5.-.-.DE) +LVDS differential data input(B2~B5,-,-,DE) 12 Link2+ Р GND 13 Ground. 14 CLKIN--LVDS differential Clock input CLKIN+ 15 +LVDS differential Clock input GND 16 Ground -LVDS differential data input(R6~R7,G6~G7,B6~B7) 17 Link3-T 18 Link3+ +LVDS differential data input(R6~R7,G6~G7,B6~B7) MODE="H",8bit 19 Mode MODE="L" .6bit Scan direction control Note1 20 SC CN₂ NC No connection 1 2 NC No connection 3 LED C1 LED Cathode1

The information contained herein is the exclusive property of TIANMA MICRO-ELECTRONICS Corporation and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of TIANMA MICRO-ELECTRONICS Corporation.

LED Anode1

Model No. P0700WVF1MA00

5	LED A2	-	LED Anode2	_
6	LED C2	-	LED Cathode2	

I---Input, O---Output, P--- Power/Ground

Note1: Scan direction is shown as below(PCB at down side):

SC=High

3 Absolute Maximum Ratings

Ta = 25℃

Item	Symbol	MIN	MAX	Unit	Remark
Power Voltage	VCC	-0.5	5.0	V	Neted
Input voltage	V_{IN}	-0.5	5.0	V	Note1
Operating Temperature	Тор	-30	80	$^{\circ}$	
Storage Temperature	Tst	-40	90	$^{\circ}$	
			≤95	%	Ta≲40°C
Deletion I I medelitor	RH		≤85	%	40°C < Ta ≤ 50°C
Relative Humidity Note2			≤55	%	50°C <ta≤60°c< td=""></ta≤60°c<>
Notez			≤36	%	60℃ <ta≤70℃< td=""></ta≤70℃<>
			≤24	%	70℃ <ta≤80℃< td=""></ta≤80℃<>
Absolute Humidity	AH		≤70	g/m³	Ta>70℃

Table 3 Absolute Maximum Ratings

Note1: VIN represents Link 0-/+,Link 1-/+,Link 2-/+,Link 3-/+,CLKIN-/+,Mode,SC.

Note2: Ta means the ambient temperature.

It is necessary to limit the relative humidity to the specified temperature range. Condensation on the module is not allowed.

4 Electrical Characteristics

4.1 Driving TFT LCD Panel

Ta = 25°C; VCC=3.3V

Item		Symbol	Min	Тур	Max	Unit	Remark
Digital Supply Volta	age	VCC	3.0	3.3	3.6	V	
Power supply ripple	е	Vp-p	-	-	100	mV	
Supply Current		IVCC	-	TBD	-	mA	
Power consumptio	n	P _{TFT}	-	TBD	-	mW	Note1
Input Voltage	Low level	V_{IL}	0		0.3*VCC	V	INOLET
input voitage	High level	V_{IH}	0.7*VCC		VCC	>	Note2
Differential input vo	oltage	Vid	200		600	mV	
Differential input common voltage		Vcom	Vid /2		VDD-1.2- Vid /2	V	
Differential input	Low level	VTL	-100	-	-	\/ em	***
threshold voltage	High level	VTH	-	-	100	mV	
Inrush current		Inrush			1.5	Α	Note3

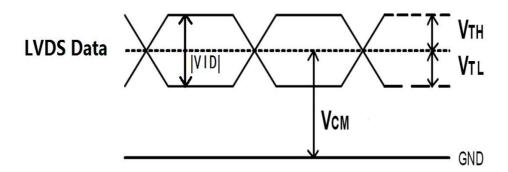


Figure 4.1 LVDS DC characteristics

Note1: To test the current dissipation, using the "white" testing pattern.

Note2: For setting "SC" and "MODE".

Note3: Inrush current definition

Vcc rising time is 470μs

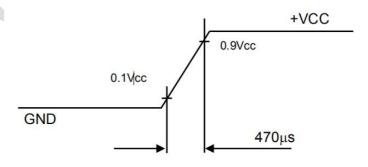
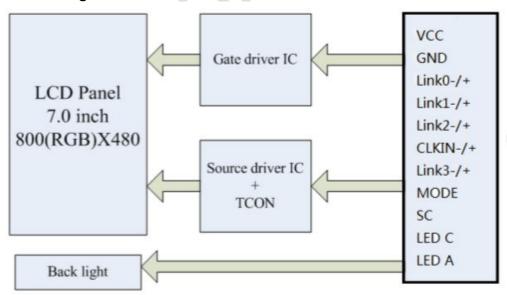


Figure 4.2 Inrush current test condition

4.2 TFT Driving Backlight

Item	Symbo I	Min	Тур	Max	Unit	Note
Forward Current	I F		110		mA	I _F /LED
Forward Current Voltage	VF		21		V	
Power Consumption	P_Total		4.62		W	
Operating Life Time	-	80000	100000		h	


Note1: The LED driving condition is defined for total LED module.

Note2: Under LCM operating, the stable forward current should be inputted. And forward voltage is for reference only.

Note3: Optical performance should be evaluated at Ta=25°C only If LED is driven by high current, high ambient temperature & humidity condition. The life time of LED will be reduced. Operating life means brightness goes down to 50% initial brightness. Typical operating life time is estimated data.

Note4: The LED driving condition is defined for each LED module.

4.3 Module Block diagram

5 Timing Chart

5.1 TFT-LCD Input Timing

VCC=3.3V, GND=0V, Ta=25°C

Parameter	Symb ol	Min	Тур	Max	Unit	Remark
CLK frequency	1/t _{CLK}	25.2	27.2	30.5	MHz	
Horizontal blanking time	t _{HBT}	24	60	120	t _{CLK}	t _{HBP} + t _{HFP}
Horizontal back porch	t _{HBP}	5	16	101	t _{CLK}	
Horizontal display area	t _{HD}	-	800	-	t _{CLK}	
Horizontal front porch	t_{HFP}	19	44	115	t _{CLK}	
Horizontal period	t _H	856	860	920	t _{CLK}	
Horizontal pulse width	t_{HPW}	1	2	100	t _{CLK}	
Vertical blanking time	t_{VBT}	10	48	72	t _H	t _{VBP} + t _{VFP}
Vertical back porch	t_{VBP}	5	5	67	t _H	
Vertical display area	t_{VD}	-	480	-	t _H	
Vertical front porch	t _{VFP}	5	43	67	t _H	
Vertical period	t _V	490 <	528	552	t _H	
Vertical pulse width	t _{VPW}	1	2	66	t _H	
Frame Rate	F	-	60	_	Hz	

Table 5.1 Timing table

5.2 Timing Diagram

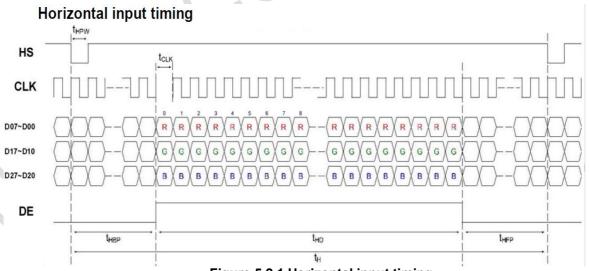


Figure 5.2.1 Horizontal input timing

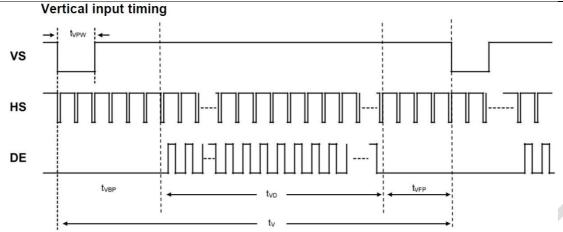
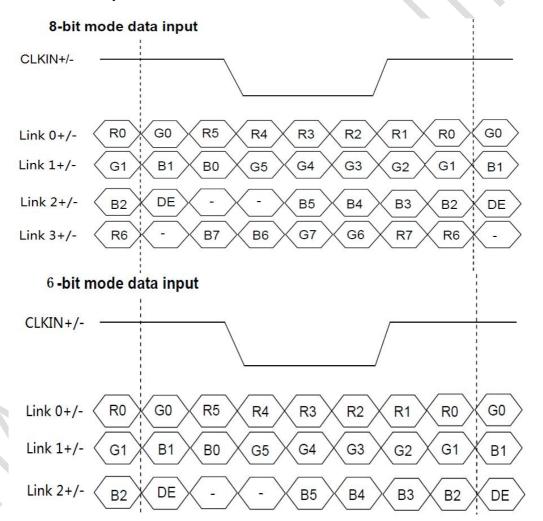



Figure 5.2.2 Vertical input timing

5.3 LVDS data input format

5.4 POWER ON/OFF SEQUENCE

Item	Symbol	Min	Тур	Max	Unit	Remark
VCC on to VCC stable	TP1	1	-	20	ms	
VCC stable to signal on	TP2	1	-	-	ms	
Signal on to LED on	TP3	200	-	-	ms	
VCC off time	TP4	1	-	10	ms	
VCC off to next VCC on	TP5	500	-	-	ms	
Signal off before VCC off	TP6	1	-		ms	
LED off before signal off	TP7	200	-	-	ms	

Table 5.4 Power on/off sequence

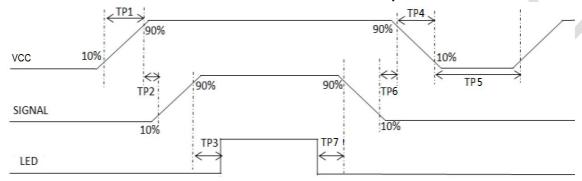
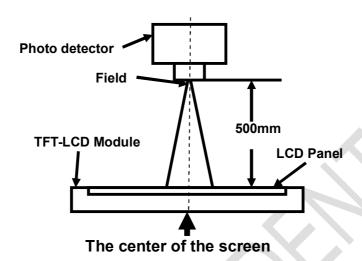


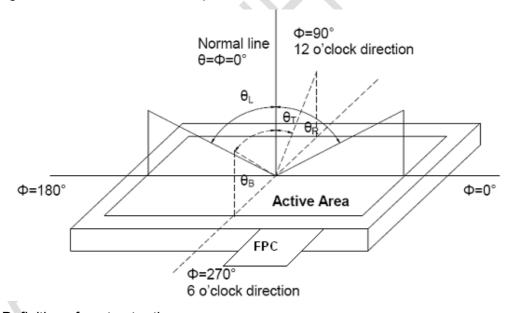
Figure 5.4 Power on/off sequence

6 Optical Characteristics

Item		Symbol	Condition	Min	Тур	Max	Unit	Remark
		θТ		75	85	-		
View Angles		θВ	CR≧10	75	85	ı	Degree	Note2,3
view Aligies		θL	UN = 10	75	85	-	Degree	Notez,5
		θR		75	85	-		
Contrast Ratio)	CR	θ=0°	800	1000			Note 3
Response Tim	•	T _{ON}	25 ℃		25	35	ms	Note 4
Response IIII	e	T_{OFF}	25 C		25	30	1115	Note 4
	White	Х	Backlight is		TBD			Note 1,5
	VVIIILE	у			TBD			Note 1,5
	Red	х			TBD			Note 1,5
Chromaticity		у			TBD			Note 1,5
Cilioniaticity	Green	Х	on		TBD			Note 1,5
	Green	у	4		TBD			Note 1,5
	Blue	х			TBD			Note 1,5
	Blue	у			TBD			Note 1,5
Uniformity		U (75	80		%	Note 6
NTSC				65	70		%	Note 5
Luminance		L		1200	1500		cd/m ²	Note 7


Test Conditions:

- 1. $I_F = XX$ mA, and the ambient temperature is 25 °C.
- 2. The test systems refer to Note 1 and Note 2.


Note 1: Definition of optical measurement system.

The optical characteristics should be measured in dark room. After 5 Minutes operation, the optical properties are measured at the center point of the LCD screen. All input terminals LCD panel must be ground when measuring the center area of the panel.

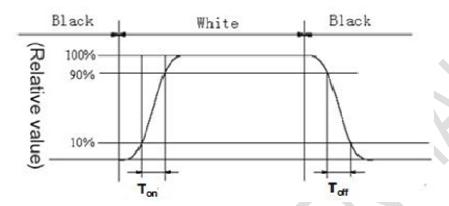
Note 2: Definition of viewing angle range and measurement system.

viewing angle is measured at the center point of the LCD

Note 3: Definition of contrast ratio

Contrast ratio (CR) = Luminance measured when LCD is on the "White" state Luminance measured when LCD is on the "Black" state

"White state ": The state is that the LCD should drive by Vwhite.

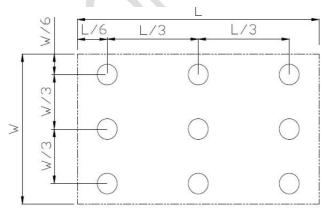

"Black state": The state is that the LCD should drive by Vblack.

Vwhite: To be determined Vblack: To be determined.

Note 4: Definition of Response time

The response time is defined as the LCD optical switching time interval between "White" state and "Black" state. Rise time (T_{ON}) is the time between photo detector output intensity changed from 10% to 90%. And fall time (T_{OFF}) is the time between photo detector output intensity changed from 90% to 10%.

Note 5: Definition of color chromaticity (CIE1931)


Color coordinates measured at center point of LCD.

Note 6: Definition of Luminance Uniformity

Active area is divided into 9 measuring areas (Refer Fig. 2). Every measuring point is placed at the center of each measuring area.

Luminance Uniformity (U) = Lmin/Lmax

L-----Active area length W----- Active area width

Lmax: The measured Maximum luminance of all measurement position.

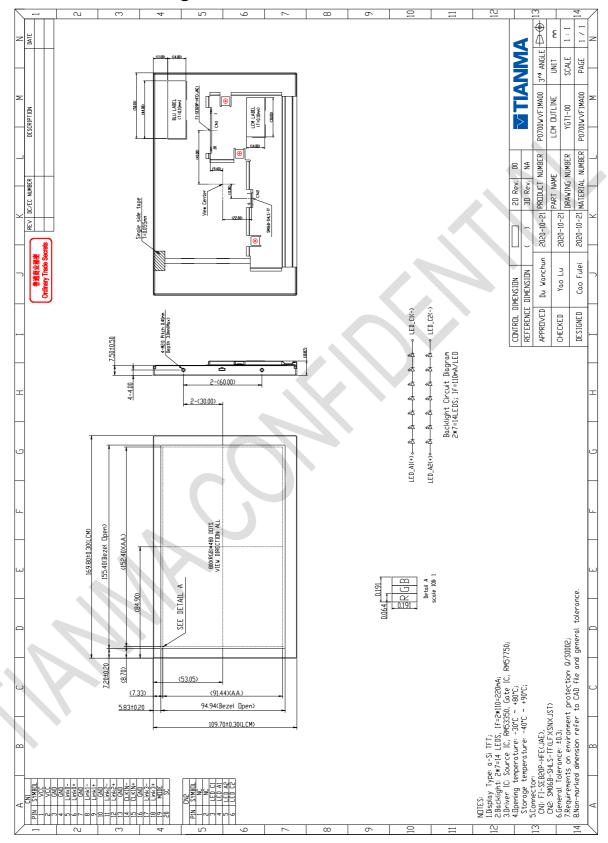
Lmin: The measured Minimum luminance of all measurement position.

Note 7: Definition of Luminance:

Measure the luminance of white state at center point.

7 Environmental / Reliability Test

No	Test Item	Condition	Remarks
1	High Temperature Operation	Ta = +80°C , 500 hours	IEC60068-2-1:2007 GB2423.2-2008
2	Low Temperature Operation	Ta = -30°C , 500 hours	IEC60068-2-1:2007 GB2423.1-2008
3	High Temperature Storage	Ta = +90°C , 500 hours	IEC60068-2-1:2007 GB2423.2-2008
4	Low Temperature Storage	Ta = −40°C , 500 hours	IEC60068-2-1:2007 GB2423.1-2008
5	Storage at High Temperature and Humidity	Ta = +60°C, 90% RH max,240hours	IEC60068-2-78 :2001 GB/T2423.3—2006
6	Thermal Shock (non-operation)	-30°C 30 min~+85°C 30 min, Change time:5min, 100 Cycle Start with cold temperature, End with high temperature,	IEC60068-2-14:1984, GB2423.22-2002
7	ESD	C=150pF,R=330Ω,5point/panel Air:±8Kv,5times; Contact:±4Kv,5times (Environment:15°C~35°C, 30%~60%.86Kpa~106Kpa)	IEC61000-4-2:2001 GB/T17626.2-2006
8	Vibration Test (non-operation)	1G Waveform: sinusoidal Frequency range: 5~500Hz Frequency sweep rate: 0.5 octave/mim Duration: one sweep from 5 to 500Hz in each of three mutually perpendicular axis(each x,y,z axis:1hour,total 3hrs)	IEC60068-2-6:2007 GB/T 2423.10-2019
9	Shock Test (non-operation)	Half Sine Wave 60G ,2ms,±X,±Y,±Z 2times for each direction	IEC60068-2-27:2008 GB/T 2423.5-2019
10	Package Drop Test	Weight≤10Kg,Height:80cm; Weight>10Kg,,Height:60cm; 1corner,3edges,6surfaces	IEC60068-2-32:1990 GB/T2423.8—1995


Note1: Ta is the ambient temperature of sample.

Note2: Before cosmetic and function test, the product must have enough recovery time, at least 2 hours at room temperature.

Note3: In the standard condition, there shall be no practical problem that may affect the display function. After the reliability test, the product only guarantees operation, but don't guarantee all of the cosmetic specification.

8 Mechanical Drawing

9 Packing Drawing

(如果客户对标签或 Label 有特殊要求,请注明)

10 Precautions for Use of LCD Modules

- 10.1 Handling Precautions
- 10.1.1 The display panel is made of glass. Do not subject it to a mechanical shock by dropping it from a high place, etc.
- 10.1.2 If the display panel is damaged and the liquid crystal substance inside it leaks out, be sure not to get any in your mouth, if the substance comes into contact with your skin or clothes, promptly wash it off using soap and water.
- 10.1.3 Do not apply excessive force to the display surface or the adjoining areas since this may cause the color tone to vary.
- 10.1.4 The polarizer covering the display surface of the LCD module is soft and easily scratched. Handle this polarizer carefully.
- 10.1.5 If the display surface is contaMinated, breathe on the surface and gently wipe it with a soft dry cloth. If still not completely clear, moisten cloth with one of the following solvents:
 - Isopropyl alcohol
 - Ethyl alcohol

Solvents other than those mentioned above may damage the polarizer. Especially, do not use the following:

- Water
- Ketone
- Aromatic solvents
- 10.1.6 Do not attempt to disassemble the LCD Module.
- 10.1.7 If the logic circuit power is off, do not apply the input signals.
- 10.1.8 To prevent destruction of the elements by static electricity, be careful to maintain an optimum work environment.
 - 10.1.8.1 Be sure to ground the body when handling the LCD Modules.
 - 10.1.8.2 Tools required for assembly, such as soldering irons, must be properly ground.
- 10.1.8.3 To reduce the amount of static electricity generated, do not conduct assembly and other work under dry conditions.
- 10.1.8.4 The LCD Module is coated with a film to protect the display surface. Be care when peeling off this protective film since static electricity may be generated.
- 10.2 Storage precautions
 - 10.2.1 When storing the LCD modules, avoid exposure to direct sunlight or to the light of fluorescent lamps.
- 10.2.2 The LCD modules should be stored under the storage temperature range. If the LCD modules will be stored for a long time, the recommend condition is:
- Temperature : 0° C $\sim 40^{\circ}$ C Relatively humidity: $\leq 80\%$
 - 10.2.3 The LCD modules should be stored in the room without acid, alkali and harmful gas.
- 10.3 Transportation Precautions
 - 10.3.1 The LCD modules should be no falling and violent shocking during transportation, and also should avoid excessive press, water, damp and sunshine.