

TFT COLOR LCD MODULE

NL128102AC29-17

48cm (19.0 Type) SXGA LVDS interface (2port)

DOD-PP-2303 (3rd edition)

This DATA SHEET is updated document from DOD-PP-2099(2)

All information is subject to change without notice. Please confirm the sales representative before starting to design your system.

INTRODUCTION

The Copyright to this document belongs to NLT Technologies, Ltd. (hereinafter called "NLT"). No part of this document will be used, reproduced or copied without prior written consent of NLT.

NLT does and will not assume any liability for infringement of patents, copyrights or other intellectual property rights of any third party arising out of or in connection with application of the products described herein except for that directly attributable to mechanisms and workmanship thereof. No license, express or implied, is granted under any patent, copyright or other intellectual property right of NLT.

Some electronic products would fail or malfunction at a certain rate. In spite of every effort to enhance reliability of products by NLT, the possibility of failures and malfunction might not be avoided entirely. To prevent the risks of damage to death, human bodily injury or other property arising out thereof or in connection therewith, each customer is required to take sufficient measures in its safety designs and plans including, but not limited to, redundant system, fire-containment and anti-failure.

The products are classified into three grades: "Standard", "Special", and "Specific".

Each quality grade is designed for applications described below. Any customer who intends to use a product for application other than that of Standard is required to contact an NLT sales representative in advance.

The **Standard:** Applications as any failure, malfunction or error of the products are free from any damage to death, human bodily injury or other property (Products Safety Issue) and not related the safety of the public (Social Issues), like general electric devices.

Examples: Office equipment, audio and visual equipment, communication equipment, test and measurement equipment, personal electronic equipment, home electronic appliances, car navigation system (with no vehicle control functions), seat entertainment monitor for vehicles and airplanes, fish finder (except marine radar integrated type), PDA, etc.

The **Special:** Applications as any failure, malfunction or error of the products might directly cause any damage to death, human bodily injury or other property (Products Safety Issue) and the safety of the public (Social Issues) and required high level reliability by conventional wisdom.

Examples: Vehicle/train/ship control system, traffic signals system, traffic information control system, air traffic control system, surgery/operation equipment monitor, disaster/crime prevention system, etc.

The **Specific:** Applications as any failure, malfunction or error of the products might severe cause any damage to death, human bodily injury or other property (Products Safety Issue) and the safety of the public (Social Issues) and developed, designed and manufactured in accordance with the standards or quality assurance program designated by the customer who requires extremely high level reliability and quality.

Examples: Aerospace system (except seat entertainment monitor), nuclear control system, life support system, etc.

The quality grade of this product is the "Standard" unless otherwise specified in this document.

CONTENTS

INTRODUCTION	2
1 OLUMI INIE	
1. OUTLINE	
1.2 APPLICATION	
1.3 FEATURES	
2. GENERAL SPECIFICATIONS	
3. BLOCK DIAGRAM	
4. DETAILED SPECIFICATIONS	7
4.1 MECHANICAL SPECIFICATIONS	
4.2 ABSOLUTE MAXIMUM RATINGS	
4.3 ELECTRICAL CHARACTERISTICS	
4.3.1 LCD panel signal processing board	
4.3.2 LED driver	
4.3.3 Current wave for LED driver	
4.3.4 Power supply voltage ripple	
4.3.5 Fuse	
4.4 POWER SUPPLY VOLTAGE SEQUENCE	11
4.4.1 LCD panel signal processing board	11
4.4.2 LED driver	
4.5 CONNECTIONS AND FUNCTIONS FOR INTERFACE PINS	13
4.5.1 LCD panel signal processing board	
4.5.2 LED driver	
4.5.3 Positions of plug and socket	14
4.6 LUMINANCE CONTROL	
4.6.1 Luminance control methods	
4.6.2 Detail of BRTP timing	
4.7 SELECTION OF LVDS DATA INPUT MAP	
4.7.1 Mode A	
4.7.2 Mode B	
4.8 DISPLAY COLORS AND INPUT DATA SIGNALS	
4.9 DISPLAY POSITION	
4.10.1 Timing characteristics	
4.10.2 Input signal timing chart	
4.11 OPTICS	
4.11.1 Optical characteristics	
4.11.2 Definition of contrast ratio	
4.11.3 Definition of luminance uniformity	
4.11.4 Definition of response times	
4.11.5 Definition of viewing angles	
5. ESTIMATED LUMINANCE LIFETIME	
6. RELIABILITY TESTS	
7. PRECAUTIONS	26
7.1 MEANING OF CAUTION SIGNS	26
7.2 CAUTIONS	26
7.3 ATTENTIONS	26
7.3.1 Handling of the product	
7.3.2 Environment	
7.3.3 Characteristics	
7.3.4 Others	
8. OUTLINE DRAWINGS	
8.1 FRONT VIEW	
8.2 REAR VIEW	30

1. OUTLINE

1.1 STRUCTURE AND PRINCIPLE

Color LCD module NL128102AC29-17 is composed of the amorphous silicon thin film transistor liquid crystal display (a-Si TFT LCD) panel structure with driver LSIs for driving the TFT (Thin Film Transistor) array and a backlight.

The a-Si TFT LCD panel structure is injected liquid crystal material into a narrow gap between the TFT array glass substrate and a color-filter glass substrate.

Color (Red, Green, Blue) data signals from a host system (e.g. signal generator, etc.) are modulated into best form for active matrix system by a signal processing board, and sent to the driver LSIs which drive the individual TFT arrays.

The TFT array as an electro-optical switch regulates the amount of transmitted light from the backlight assembly, when it is controlled by data signals. Color images are created by regulating the amount of transmitted light through the TFT array of red, green and blue dots.

1.2 APPLICATION

• Color monitor system


1.3 FEATURES

- Ultra-wide viewing angle (Super Fine TFT (SFT))
- Wide color gamut
- High luminance
- High contrast
- LVDS interface
- Selectable LVDS data input map
- LED backlight built in LED driver
- Acquisition product for UL60950-1/CSA C22.2 No.60950-1-03 (File number: E170632)
- Compliant with the European RoHS directive (2011/65/EU)

2. GENERAL SPECIFICATIONS

Display area	376.32 (H) × 301.056 (V) mm
Diagonal size of display	48cm (19.0 inches)
Drive system	a-Si TFT active matrix
Display color	16,777,216 colors
Pixel	1,280 (H) × 1,024 (V) pixels
Pixel arrangement	RGB (Red dot, Green dot, Blue dot) vertical stripe
Dot pitch	$0.098 \text{ (H)} \times 0.294 \text{ (V)} \text{ mm}$
Pixel pitch	$0.294 \text{ (H)} \times 0.294 \text{ (V)} \text{ mm}$
Module size	$396.0 \text{ (W)} \times 324.0 \text{ (H)} \times 18.0 \text{ (D)} \text{ mm (typ.)}$
Weight	2,100 (typ.)
Contrast ratio	1,000:1 (typ.)
Viewing angle	At the contrast ratio ≥10:1 • Horizontal: Right side 88° (typ.), Left side 88° (typ.) • Vertical: Up side 88° (typ.), Down side 88° (typ.)
Designed viewing direction	• Viewing angle with optimum grayscale (γ≒ 2.2): Normal axis (perpendicular)
Polarizer surface	Antiglare
Polarizer pencil-hardness	2H (min.) [by JIS K5600]
Color gamut	At LCD panel center 72% (typ.) [against NTSC color space]
Response time	$Ton+Toff (10\% \longleftrightarrow 90\%)$ 25ms (typ.)
Luminance	At the maximum luminance control 800 cd/m² (typ.)
Signal system	LVDS 2port (Receiver: THC63LVDF84B, THine Electronics Inc. or equivalent) [8-bit digital signals for data of RGB colors, Dot clock (CLK), Data enable (DE)]
Power supply voltage	LCD panel signal processing board: 5.0V LED driver: 12.0V
Backlight	LED backlight built in LED driver
Power consumption	At checkered flag pattern, the maximum luminance control 45.0W (typ.)

3. BLOCK DIAGRAM

Note1: Relations between GND (Signal ground), GNDB (LED driver ground) and FG (Frame ground) in the LCD module are as follow.

GND - FG	Connected
GND - GNDB	Not connected
FG - GNDB	Not connected

Note2: GND, GNDB and FG must be connected to customer equipment's ground, and it is recommended that these grounds to be connected together in customer equipment.

4. DETAILED SPECIFICATIONS

4.1 MECHANICAL SPECIFICATIONS

Parameter	Specification		Unit
Module size	$396.0 \pm 0.5 \text{ (W)} \times 324.0 \pm 0.5 \text{ (H)} \times 18.0 \pm 0.5 \text{ (D) (typ.)}$	Note1 Note2	mm
Display area	376.32 (H) × 301.056 (V)	Note2	mm
Weight	2,100 (typ.), 2,310 (max.)		g

Note1: Excluding a bulge of the cover for circuit boards

Note2: See "8. OUTLINE DRAWINGS".

4.2 ABSOLUTE MAXIMUM RATINGS

Parameter				Rating	Unit	Remarks	
Power supply	LCD panel signal processing board		VDD	-0.3 to +6.5	V		
voltage	LED o	lriver	VDDB	-0.3 to +14.0	ľ		
	Display No		VD	-0.3 to +2.4			
Input voltage for	Function Not		VF	-0.3 to +3.3	***	Ta = 25°C	
signals			BRTC	-0.3 to +6.3	V		
	Function signal	for LED driver	BRTI	-0.3 to +6.0			
	Tunetion signal for LLD driver		BRTP	-0.3 to +5.5			
			PWSEL	-0.3 to +6.5			
5	Storage temperature		Tst	-30 to +80	°C	-	
Operating	amparatura	Front surface	TopF	-20 to +70	°C	Note3, Note5	
Operating t	emperature	Rear surface	TopR	-20 to +70	°C	Note4, Note5	
				≤ 95	%	Ta ≤ 40°C	
	Relative humidity		RH	≤ 85	%	$40^{\circ}\text{C} < \text{Ta} \le 50^{\circ}\text{C}$	
	Note6		KH	≤ 55	%	$50^{\circ}\text{C} < \text{Ta} \le 60^{\circ}\text{C}$	
				≤ 36	%	$60^{\circ}\text{C} < \text{Ta} \le 70^{\circ}\text{C}$	
Absolute humidity Note6			АН	≤ 70 Note7	g/m ³	Ta > 70°C	
Operating altitude			-	≤ 5,100	m	-20°C≤ Ta ≤ 70°C	
	Storage altitude		-	≤ 13,600	m	-30°C≤ Ta ≤ 80°C	

Note1: DA0+/-, DA1+/-, DA2+/-, DA3+/-, CKA+/-, DB0+/-, DB1+/-, DB2+/-, DB3+/-, CKB+/-

Note2: Function signal is TxSEL.

Note3: Measured at LCD panel surface (including self-heat)

Note4: Measured at LCD module's rear shield surface (including self-heat)

Note5: The maximum or the minimum temperature at any point of LCD panel surface and rear shield surface

Note6: No condensation

Note7: Water amount at Ta= 70°C and RH= 36%

4.3 ELECTRICAL CHARACTERISTICS

4.3.1 LCD panel signal processing board

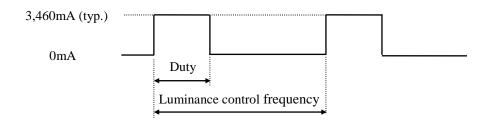
 $(Ta=25^{\circ}C)$

Parameter	Symbol	min.	typ.	max.	Unit	Remarks	
Power supply voltage		VDD	4.5	5.0	5.5	V	-
Power supply current		IDD	-	700 Note1	900 Note2	mA	at VDD = 5.0V
Permissible ripple voltage		VRP	-	-	100	mVp-p	for VDD
Differential input threshold	High	VTH	-	-	+100	mV	at VCM = 1.2V
voltage	Low	VTL	-100	-	-	mV	Note3
Terminating resistance		RT	-	100	-	Ω	-
Input voltage for TxSEL	High	VFH	Ke	ep this pin op	oen.	-	
signal	Low	VFL	-	-	0.9	V	TxSEL Note4
Input current for TxSEL signa	ıl	IFL	-400	-	400	μΑ	

Note1: Checkered flag pattern [by EIAJ ED-2522]

Note2: Pattern for maximum current

Note3: Common mode voltage for LVDS receiver


Note4: TxSEL is pulled-up in the product. (Pull-up resistance: $10k\Omega$)

4.3.2 LED driver

(Ta= 25°C)

Parameter			Symbol	min.	typ.	max.	Unit	Remarks
Power supply voltage			VDDB	10.8	12.0	13.2	V	-
Power supply current			IDDB	-	3,460	4,020	mA	VDDB= 12.0V, At the maximum luminance control
	BRTI signal		VBI	0.1	-	1.0	V	
	DDTD -:1	High	VBPH	2.3	-	4.5	V	
Input voltage	BRTP signal	Low	VBPL	0	-	0.6	V	
for function	DDTC signal	High	VBCH	2.3	-	4.5	V	
signals	BRTC signal	Low	VBCL	0	-	0.6	V	
	DWGEL : 1	High	VBSH	2.3	-	3.3	V	
	PWSEL signal	Low	VBSL	0	-	0.9	V	
	BRTI signal		IBI	-200	-	200	μΑ	-
	DDTD signal	High	IBPH	-	-	500	μΑ	
Input current	BRTP signal	Low	IBPL	-500	-	-	μΑ	
for function signals	DDTC signal	High	IBCH	-	-	5,000	μΑ	
	BRTC signal	Low	IBCL	-5,000	_	_	μΑ	
	PWSEL signal High	IPSH	-	-	5,000	μΑ		
	1 WOEL Signal	Low	IPSL	-5,000	-	-	μΑ	

4.3.3 Current wave for LED driver

Duty ratio: 100% (at the maximum luminance control) to 1% (at the minimum luminance control) Luminance control frequency: 554 Hz (typ.)

Note1: Luminance control frequency indicate the input pulse frequency, when select the external pulse control. See "4.6.2 Detail of BRTP timing".

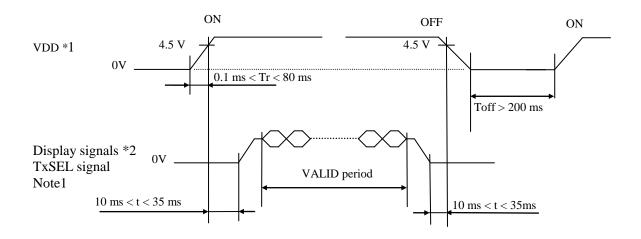
Note2: The power supply lines (VDDB and GNDB) have large ripple voltage during luminance control. There is the possibility that the ripple voltage produces acoustic noise and signal wave noise in audio circuit and so on.

4.3.4 Power supply voltage ripple

This product works, even if the ripple voltage levels are beyond the permissible values as following the table, but there might be noise on the display image.

Power supply	voltage	Ripple voltage Note1 (Measure at input terminal of power supply)	Unit
VDD	5.0V	≤ 100	mVp-p
VDDB	12.0V	≤ 200	mVp-p

Note1: The permissible ripple voltage includes spike noise.

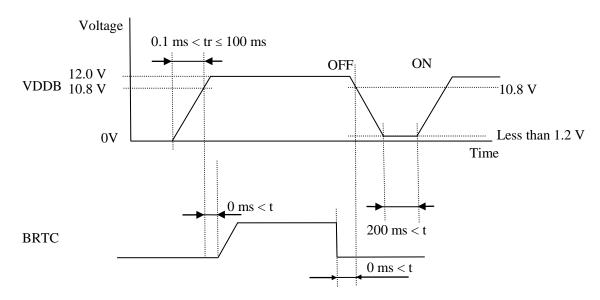

4.3.5 Fuse

Domomoton	Fuse		Datina	Fusing	Remarks
Parameter	Туре	Supplier	Rating	current	Remarks
VDD	FCC32252AD	KAMAYA	2.5A	6.25A, 5 seconds	
VDD	FCC32232AD	ELECTRIC Co.,Ltd.	32V	maximum	
	WDDD CDUCO101 HVC A 105V	CONQUER	6.0A	18.0A,	Note1
VDDB	CRUCQ12LHK6A125V	ELECTRONICS Co.,Ltd.	63V	3 seconds maximum	

Note1: The power supply capacity should be more than the fusing current. If it is less than the fusing current, the fuse may not blow in a short time, and then nasty smell, smoke and so on may occur.

4.4 POWER SUPPLY VOLTAGE SEQUENCE

4.4.1 LCD panel signal processing board


- *1 In terms of voltage variation (voltage drop) while VDD rising edge is below 4.5 V, a protection circuit may work, and then this product may not work.
- *2 These signals should be measured at the terminal of 100 Ω resistances.

Note1: Display signals (DA0+/-, DA1+/-, DA2+/-, DA3+/-, CKA+/-, DB0+/-, DB1+/-, DB2+/-, DB3+/-, CKB+/-) and TxSEL signal must be "0" voltage, exclude the VALID period (See above sequence diagram). If these signals are higher than 0.3V, the internal circuit is damaged.

If some of display and function signals of this product are cut while this product is working, even if the signal input to it once again, it might not work normally. VDD should be cut when the display and function signals are stopped.

Note2: VDD should be 4.5 V or more while VDD ON period.

4.4.2 LED driver

Note1: The backlight should be turned on within the valid period of LVDS signals, in order to avoid unstable data display.

Note2: If rise time tr of VDDB is more than 100 ms, the backlight will be turned off by protection circuit for LED driver.

Note3: When VDDB is 0V or BRTC is Low, PWSEL must be set to Low or Open

4.5 CONNECTIONS AND FUNCTIONS FOR INTERFACE PINS

4.5.1 LCD panel signal processing board

CN1 socket (LCD module side): FI-X30SSL-HF (Japan Aviation Electronics Industry Limited (JAE))
Adaptable plug: FI-X30C series/ FI-X30H series/ FI-X30M series

(Japan Aviation Electronics Industry Limited (JAE))

Pin No.	Symbol	Signal	Remarks		
1	DA0-		N . 1		
2	DA0+	Odd pixel data 0	Note1		
3	DA1-		N-4-1		
4	DA1+	Odd pixel data 1	Note1		
5	DA2-	Odd pixel data 2	Note1		
6	DA2+	Odd pixei data 2	Note1		
7	GND	Ground	Note2		
8	CKA-	Odd pixel clock	Note1		
9	CKA+	Odd pixei clock	Note1		
10	DA3-	Odd pixel data 3	Note1		
11	DA3+	Odd pixei data 3	Note1		
12	DB0-	Even pixel data 0	Note1		
13	DB0+	Even pixel data o			
14	GND	Ground	Note2		
15	DB1-	Even pixel data 1	Note1		
16	DB1+	Even pixel data 1	Note1		
17	GND	Ground	Note2		
18	DB2-	Even pixel data 2	Note1		
19	DB2+	Even pixel data 2	TVOICT		
20	CKB-	Even pixel clock	Note1		
21	CKB+	Even pixel clock	TVOICT		
22	DB3-	Even pixel data 3	Note1		
23	DB3+	Even pixel data 5	110101		
24	GND	Ground	Note2		
25	TxSEL	Selection of LVDS data input map	Open: Mode A Low: Mode B Note3, Note4		
26	RSVD	-	Keep this pin Open.		
27	N.C.	-	Keep this pin Open.		
28					
29	VDD	Power supply	Note2		
30					

Note1: Twist pair wires with 100Ω (Characteristic impedance) should be used between LCD panel signal processing board and LVDS transmitter.

Note2: All GND and VDD terminals should be used without any non-connected lines.

Note3: TxSEL is pulled-up in the product. (Pull-up resistance: $10k\Omega$)

Note4: See "4.7 SELECTION OF LVDS DATA INPUT MAP".

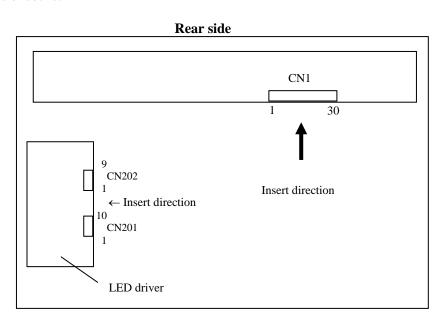
4.5.2 LED driver

CN201 socket (LCD module side): DF3Z-10P-2H (2*) (HIROSE ELECTRIC Co,.Ltd.) Adaptable plug: DF3-10S-2C (HIROSE ELECTRIC Co,.Ltd.)

	1 .0	(, ,
Pin No.	Symbol	Function	Description
1	GNDB		
2	GNDB		
3	GNDB	LED driver ground	Note1
4	GNDB		
5	GNDB		
6	VDDB		
7	VDDB		
8	VDDB	Power supply	Note1
9	VDDB		
10	VDDB		

Note1: All VDDB and GNDB terminals should be used without any non-connected lines.

CN202 socket (LCD module side): 53261-0971 (MOLEX Inc.) Adaptable plug: 51021-0900 (MOLEX Inc.)


Pin No.	Symbol	Function	Description	
1	PWSEL	Selection of luminance control signal method	Note1, Note2	
2	GNDB	LED driver ground	Note3	
3	BRTP	BRTP signal		
4	BRTI	Luminance control terminal	Note1	
5	BRTH	Lummance control terminal		
6	BRTC	Backlight ON/OFF control signal	High or Open: Backlight ON Low: Backlight OFF	
7	N. C.	-	Keep this pin Open.	
8	GNDB	LED driver ground	Note3	
9	GNDB	LED driver ground	Notes	

Note1: See "4.6 LUMINANCE CONTROL ".

Note2: When VDDB is 0V or BRTC is Low, PWSEL must be set to Low or Open.

Note3: All GNDB terminals should be used without any non-connected lines.

4.5.3 Positions of socket

4.6 LUMINANCE CONTROL

4.6.1 Luminance control methods

 $(Ta=25^{\circ}C)$

			(1u-23 C)
Method	Adjustment and luminance ratio	PWSEL terminal	BRTP terminal
Variable resistor control Note 1 Voltage control Note 1	Adjustment The variable resistor (R) for luminance control should be 10kΩ ±5%, 1/10W. Minimum point of the resistance is the minimum luminance and maximum point of the resistance is the maximum luminance. The resistor (R) must be connected between BRTH-BRTI terminals. **Resistance Luminance ratio 1 kΩ Note4 10% (typ.) 10 kΩ 100% **Adjustment Voltage control method works, when BRTH terminal is 0V and VBI voltage is input between BRTI-BRTH terminals. This control method can carry out continuation adjustment of luminance. Luminance is the maximum when BRTI terminal is Open **Luminance ratio Note3 BRTI Voltage (VBI) Luminance ratio 0.1 V Note4 10% (typ.) 1.0 V 100% **Indicate the resistance is the minimum point of the resistance is the maximum when BRTI terminal is Open 1.0 V Note4 10% (typ.) 1.0 V 100%	High or Open	Open
Pulse width modulation (PWM) Note1 Note2 Note5	Adjustment Pulse width modulation (PWM) method works, when PWSEL terminal is Low and PWM signal (BRTP signal) is input into BRTP terminal. The luminance is controlled by duty ratio of BRTP signal. Keep BRTI and BRTH terminals Open when using PWM method. Luminance ratio Note3 Duty ratio Luminance ratio 0.01 1% (typ.) (At frequency: 325 Hz) 1.0 100%	Low	BRTP signal

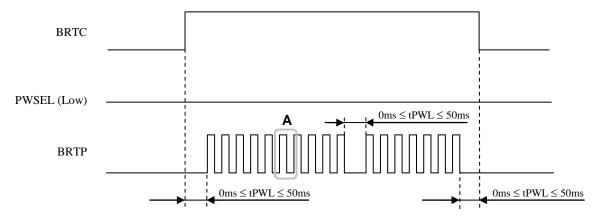
Note1: In case of the variable resistor control method and the voltage control method, noises may appear on the display image depending on the input signals timing for LCD panel signal processing board.

Use Pulse width modulation (PWM) method, if interference noises appear on the display image!

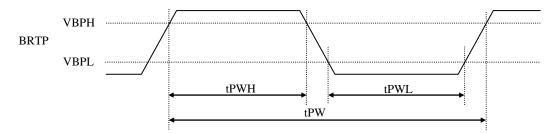
Note2: The LED driver will stop working, if the Low period of BRTP signal is more than 50ms while BRTC signal is High or Open. Then the backlight will not turn on anymore, even if BRTP signal is input again. This is not out of order. The LED driver will start to work when power is supplied again.

Note3: These data are the target values.

Note4: Do not set the variable resistor is less than $1k\Omega$ or BRTI voltage is less than 0.1V.Otherwise flickers may cause or the LED may be turned off.


Note5: See "4.6.2 Detail of BRTP timing".

☆


4.6.2 Detail of BRTP timing

(1) Timing diagrams

• Outline chart

• Detail of A

(2) Each parameter

Parameter	Symbol	min.	typ.	max.	Unit	Remarks
PWM frequency	f_{PWM}	185	-	1k	Hz	Note1,2,3
PWM duty ratio	DR_{PWM}	1	-	100	%	Note4,5
PWM pulse width	tPWH	30	-	-	μs	Note1,4,5

Note1: Definition of parameters is as follows.

$$f_{PWM} = -\frac{1}{tPW} \quad \text{ , } DR_{PWM} = -\frac{tPWH}{tPW}$$

Note2: A recommended f_{PWM} value is as follows.

$$f_{PWM} = \frac{2n-1}{4} \times fv$$

(n= integer, fv= frame frequency of LCD module)

Note3: Depending on the frequency used, some noise may appear on the screen, please conduct a thorough evaluation.

Note4: While the BRTC signal is high, do not set the tPWH (PWM pulse width) is less than 30µs. It may cause abnormal working of the backlight. In this case, turn the backlight off and then on again by BRTC signal.

Note5: Regardless of the PWM frequency, both PWM duty ratio and PWM pulse width must be always more than the minimum values.

4.7 SELECTION OF LVDS DATA INPUT MAP

4.7.1 Mode A

		_		Transı	mitter				
Input data	Note1		Pin	THC63LVDM83D or equivalent	Pin	THC63LVD823 or equivalent			CN1
	RA0	\rightarrow	51	TA0	53	R12	Note2	Pin	Symbol
	RA1	\rightarrow	52	TA1	54	R13 TA1-	\rightarrow	1	DA0-
	RA2	\rightarrow		TA2		R14 TA1+	\rightarrow		DA0+
	RA3	\rightarrow		TA3		R15			
	RA4	\rightarrow		TA4		R16 TB1-	\rightarrow	3	DA1-
ਬ	RA5	\rightarrow		TA5		R17 TB1+	\rightarrow		DA1+
g	GA0	\rightarrow		TA6		G12			
.s	GA1	\rightarrow		TB0		G13 TC1-	\rightarrow	5	DA2-
[0]	GA2	\rightarrow	7	TB1		G14 TC1+	\rightarrow		DA2+
l tu	GA3	\rightarrow		TB2		G15			GND
သ	GA4	\rightarrow	12	TB3	67	G16 TCLK1-	\rightarrow	8	CKA-
pu	GA5	\rightarrow	14	TB4	68	G17 TCLK1+	\rightarrow	9	CKA+
1 a	BA0	\rightarrow	15	TB5	73	B12			
ats	BA1	\rightarrow	19	TB6	74	B13 TD1-	\rightarrow	10	DA3-
p I	BA2	\rightarrow	20	TC0 1st	75	B14 TD1+	\rightarrow	11	DA3+
xe]	BA3	\rightarrow	22	TC1	76	B15			
pi	BA4	\rightarrow		TC2	77	B16			
Odd pixel data and control signal	BA5	\rightarrow	24	TC3	78	B17			
	RSVD	\rightarrow	27	TC4	7	RSVD			
Note3	RSVD	\rightarrow	28	TC5		RSVD			
	DE	\rightarrow	30	TC6	9	DE			
	RA6	\rightarrow	50	TD0	51	R10			
	RA7	\rightarrow		TD1		R11			
	GA6	\rightarrow	8	TD2	61	G10			
	GA7	\rightarrow	10	TD3		G11			
	BA6	\rightarrow		TD4	69	B10			
	BA7	\rightarrow	18	TD5	70	B11			
Note3	RSVD	\rightarrow	25	TD6	-				
	CLK	\rightarrow	31	CLKIN	10	CLK			
	RB0	\rightarrow	51	TA0	81	R22			
	RB1	\rightarrow	52	TA1		R23 TA2-	\rightarrow	12	DB0-
	RB2	\rightarrow		TA2		R24 TA2+	\rightarrow	13	DB0+
	RB3	\rightarrow		TA3		R25			GND
	RB4	\rightarrow		TA4		R26 TB2-	\rightarrow		DB1-
	RB5	\rightarrow		TA5		R27 TB2+	\rightarrow		DB1+
	GB0	\rightarrow		TA6		G22			GND
	GB1	\rightarrow		TB0	92	4 ↓	\rightarrow		DB2-
	GB2	\rightarrow		TB1		G24 TC2+	\rightarrow	19	DB2+
	GB3	\rightarrow		TB2		G25			
ta	GB4	\rightarrow		TB3	95	.	\rightarrow		CKB-
el data	GB5	\rightarrow		TB4		G27 TCLK2+	\rightarrow	21	CKB+
el	BB0	\rightarrow		TB5		B22			
Even pix	BB1	\rightarrow		TB6		B23 TD2-	\rightarrow		DB3-
n I	BB2	\rightarrow		TC0 2nd		B24 TD2+	\rightarrow		DB3+
ve	BB3	\rightarrow		TC1		B25			GND
田	BB4	\rightarrow		TC2		B26			TxSEL
	BB5	\rightarrow		TC3		B27			RSVD
	RSVD	\rightarrow		TC4	-	1			N.C.
	RSVD	\rightarrow		TC5	_	1			VDD
Note3	RSVD	\rightarrow		TC6	- 70	D20			VDD
	RB6	\rightarrow		TD0		R20		30	VDD
	RB7	\rightarrow		TD1		R21			
	GB6	\rightarrow		TD2		G20			
	GB7	\rightarrow		TD3		G21			
	BB6	\rightarrow		TD4		B20			
NT	BB7	\rightarrow		TD5		B21			
Notes	RSVD	\rightarrow		TD6	-	ł			
	CLK	\rightarrow	31	CLKIN	-				

4.7.2 Mode B

		_		Trans	mitter				
Input data	Note1		Pin	THC63LVDM83D or equivalent	Pin	THC63LVD823 or equivalent			CN1
	RA2	\rightarrow				R12	Note2	Pin	Symbol
	RA3	\rightarrow				R13 TA1-	\rightarrow		DA0-
	RA4	\rightarrow		TA2		R14 TA1+	\rightarrow	2	DA0+
	RA5	\rightarrow		TA3		R15		2	DA1
ਢ	RA6 RA7	\rightarrow \rightarrow		TA4 TA5		R16 TB1- R17 TB1+	\rightarrow \rightarrow		DA1- DA1+
gus	GA2	\rightarrow		TA6		G12		4	DAI+
Sig	GA3	$\stackrel{'}{ ightarrow}$				G13 TC1-	\rightarrow	5	DA2-
101	GA4	\rightarrow				G14 TC1+	\rightarrow		DA2+
nt nt	GA5	\rightarrow		TB2		G15			GND
3	GA6	\rightarrow	12	TB3		G16 TCLK1-	\rightarrow		CKA-
pun	GA7	\rightarrow		TB4		G17 TCLK1+	\rightarrow	9	CKA+
a a	BA2	\rightarrow		TB5		B12			
dat	BA3	\rightarrow		TB6		B13 TD1-	\rightarrow		DA3-
<u> </u>	BA4	\rightarrow		TC0 1st		B14 TD1+	\rightarrow	11	DA3+
ix.	BA5 BA6	\rightarrow \rightarrow		TC1 TC2		B15 B16			
d þ	BA7	\rightarrow		TC3		B17			
Odd pixel data and control signal	RSVD	\rightarrow		TC4		RSVD			
	RSVD	\rightarrow		TC5		RSVD			
	DE	\rightarrow		TC6		DE			
	RA0	\rightarrow	50	TD0		R10			
	RA1	\rightarrow		TD1		R11			
	GA0	\rightarrow		TD2		G10			
	GA1	\rightarrow		TD3		G11			
	BA0	\rightarrow		TD4		B10			
N-4-2	BA1 RSVD	\rightarrow \rightarrow		TD5 TD6	/0	B11			
Notes	CLK	\rightarrow	31	CLKIN	10	CLK			
	RB2	\rightarrow		TA0		R22			
	RB3	\rightarrow		TA1		R23 TA2-	\rightarrow	12	DB0-
	RB4	$\stackrel{'}{\rightarrow}$		TA2		R24 TA2+	\rightarrow		DB0+
	RB5	\rightarrow		TA3		R25	,		GND
	RB6	\rightarrow		TA4		R26 TB2-	\rightarrow		DB1-
	RB7	\rightarrow		TA5		R27 TB2+	\rightarrow		DB1+
	GB2	\rightarrow		TA6		G22			GND
	GB3	\rightarrow				G23 TC2-	\rightarrow		DB2-
	GB4	\rightarrow		TB1		G24 TC2+	\rightarrow	19	DB2+
	GB5	\rightarrow		TB2 TB3		G25 G26 TCLK2-		20	CKB-
data	GB6 GB7	\rightarrow \rightarrow		TB4		G26 TCLK2- G27 TCLK2+	\rightarrow \rightarrow		CKB+
il d	BB2	$\stackrel{'}{\rightarrow}$		TB5		B22		1	J111
Even pixel	BB3	\rightarrow		TB6		B23 TD2-	\rightarrow	22	DB3-
ιp	BB4	\rightarrow		TC0 2nd	1	B24 TD2+	\rightarrow		DB3+
ver	BB5	\rightarrow	22	TC1	2	B25		24	GND
É	BB6	\rightarrow		TC2		B26			TxSEL
	BB7	\rightarrow		TC3		B27			RSVD
	RSVD	\rightarrow		TC4	-				N.C.
	RSVD	\rightarrow			-				VDD
Notes	RSVD RB0	\rightarrow \rightarrow		TC6 TD0	70	R20			VDD VDD
	RB1	\rightarrow		TD1		R21		50	עעי
	GB0	\rightarrow		TD2		G20			
	GB0	$\stackrel{'}{ ightarrow}$		TD3		G21			
	BB0	\rightarrow		TD4		B20			
	BB1	\rightarrow		TD5		B21			
Note3	RSVD	\rightarrow	25	TD6	-				
	CLK	\rightarrow	31	CLKIN	-				

Note1: LSB (Least Significant Bit) – RA0, GA0, BA0, RB0, GB0, BB0 MSB (Most Significant Bit) – RA7, GA7, BA7, RB7, GB7, BB7

Note2: Twist pair wires with 100Ω (Characteristic impedance) should be used between LCD panel signal processing board and LVDS transmitter.

Note3: Input signal RSVD is not used inside the product, but do not keep pin open to avoid noise problem.

4.8 DISPLAY COLORS AND INPUT DATA SIGNALS

This product can display in equivalent to 16,777,216 colors in 256 gray scales. Also the relation between display colors and input data signals is as the following table.

										Data si	gna	l (0: I	Low 1	evel,	1: Hi	gh le	vel)								
Disp	olay colors	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	GA7 G	A6	GA5	GA4	GA3	GA2	GA1	GA0	BA7	BA6	BA5	BA4	BA3	BA2	BA1	BA0
		RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	GB7 G	В6	GB5	GB4	GB3	GB2	GB1	GB0	BB7	BB6	BB5	BB4	BB3	BB2	BB1	BB0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
ors	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Col	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Basic Colors	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
B	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
e		0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
scal	dark •	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
gray scale	↑					•								•								:			
Red g	↓	1	1	1	1	:	1	Λ	1	_	Λ	Λ	0	:	Λ	Λ	Ω	0	٥	Λ	Λ	:	Λ	Λ	0
Š	bright	1 1	1	1	1 1	1	1	0	1 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Dod	1	1	1	1	1 1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Diack	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
ale	dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
ıy sc	↑		Ü	Ü			Ü	Ü	Ü		Ü	Ü			Ü	•	O		Ü	Ü	O		Ü	Ü	O
ı gra	, 																					:			
Green gray scale	bright	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
9	C	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
cale	dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
ay s	\uparrow				:	:								:								:			
Blue gray scale	\downarrow				:	:								:								:			
Blu	bright	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

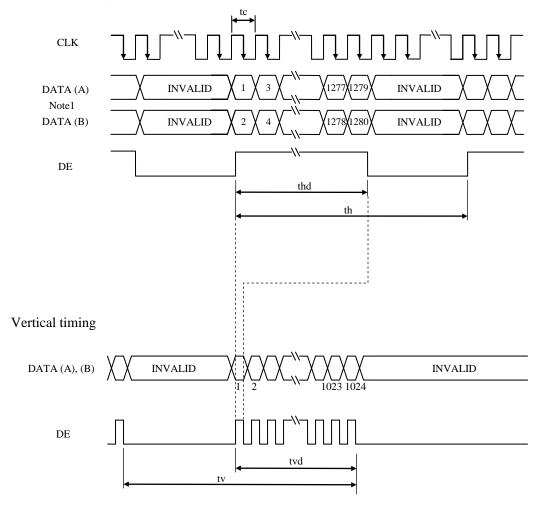
4.9 DISPLAY POSITION

D ((1, 1)		D	(2, 1)		_	
RA	GA	BA	RB	GB	BB		
		1				-	
	D(1, 1	l)	D(2	2, 1)	>	•••	D(1280, 1)
	D(1, 2)	2)	D(2	2, 2)		•••	D(1280, 2)
	•			•		•	•
	•			•		•	•
	•			•		•	•
	•			•		•	•
	•			•		•	•
	•			•		•	•
I	D(1,102)	24)	D(2,	1024)		•••	D(1280, 1024)

4.10 INPUT SIGNAL TIMINGS

4.10.1 Timing characteristics

	Parameter		Symbol	min.	typ.	max.	Unit	Remarks
	Freq	luency	1/tc	49	54	59	MHz	18.52 ns (typ.)
CLK	Dut	y ratio	-				1	Note2
	Rise time	e, Fall time	-		-		ns	Note2
	CLK-DATA	Setup time	-				ns	
DATA	CLK-DATA	Hold time	-		-		ns	Note2
	Rise time	e, Fall time	-				ns	
		Cycle	th	12.3	15.63	20.59	μs	64.0 kHz (typ.)
	Horizontal	Сусіе	tii	660	844	1,024	CLK	Note1, Note2
		Display period	thd		640			-
	Vertical	Cycle	tv	13.1	16.6	20.0	ms	60.0 Hz (typ.)
DE	(One frame)	Сусіе	ιν	1,030	1,066	1,422	Н	Note1
	(One traine)	Display period	tvd		1,024		Н	-
	CLK-DE	Setup time	-				ns	
	CLK-DE	Hold time	-		-		ns	Note2
	Rise time	e, Fall time	-				ns	


Note1: Definition of parameters is as follows.

tc = 1CLK, th = 1H

Note2: See the data sheet of LVDS transmitter.

4.10.2 Input signal timing chart

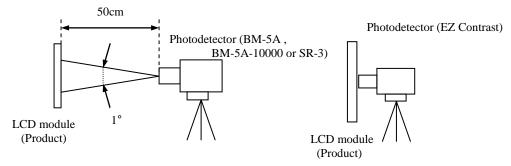
Horizontal timing

Note1: DATA (A) = RA0-RA7, GA0-GA7, BA0-BA7 DATA (B) = RB0-RB7, GB0-GB7, BB0-BB7

4.11 OPTICS

4.11.1 Optical characteristics

(Note1, Note2)


Paramet	ter	Condition	Symbol	min.	typ.	max.	Unit	Measuring instrument	Remarks
Luminance		White at center $\theta R = 0^{\circ}$, $\theta L = 0^{\circ}$, $\theta U = 0^{\circ}$, $\theta D = 0^{\circ}$		600	800	-	cd/m ²	BM5A or SR-3	-
Contrast 1	ratio	White/Black at center $\theta R = 0^{\circ}$, $\theta L = 0^{\circ}$, $\theta U = 0^{\circ}$, $\theta D = 0^{\circ}$	CR	750	1,000	-	-	BM5A or SR-3	Note3
Luminar uniform		White $\theta R = 0^{\circ}$, $\theta L = 0^{\circ}$, $\theta U = 0^{\circ}$, $\theta D = 0^{\circ}$	LU	-	1.1	1.25	-	BM-5A	Note4
	White	x coordinate	Wx	0.250	0.300	0.350	-		
	willte	y coordinate	Wy	0.265	0.315	0.365	-		
	Red	x coordinate	Rx	0.590	0.640	0.690	-		
Chaomatiaity	Keu	y coordinate	Ry	0.280	0.330	0.380	-		
Chromaticity	Green	x coordinate	Gx	0.250	0.300	0.350	-	SR-3	Note5
		y coordinate	Gy	0.570	0.620	0.670	-		110000
	Blue	x coordinate	Bx	0.100	0.150	0.200	-		
	Blue	y coordinate	Ву	0.010	0.060	0.110	-		
Color gar	mut	$\theta R = 0^{\circ}, \theta L = 0^{\circ}, \theta U = 0^{\circ}, \theta D = 0^{\circ}$ at center, against NTSC color space		65	72	-	%		
Response	tima	Black to white	Ton	ı	14	25	ms	BM-5A	Note6
Response	ume	White to black	Toff	1	11	15	ms	-10000	Note7
	Right	$\theta U = 0^{\circ}, \theta D = 0^{\circ}, CR \ge 10$	θR	70	88	-	0		
Viewing	Left	$\theta U = 0^{\circ}, \theta D = 0^{\circ}, CR \ge 10$	θL	70	88	-	0	BM-5A, EZ	Note8
angle	Up	$\theta R = 0^{\circ}, \ \theta L = 0^{\circ}, \ CR \ge 10$	θU	70	88	-	0	EZ Contrast	Notes
	Down	$\theta R = 0^{\circ}, \ \theta L = 0^{\circ}, \ CR \ge 10$	θD	70	88	-	0		

Note1: These are initial characteristics.

Note2: Measurement conditions are as follows.

Ta = 25°C, VDD = 5.0V, VDDB = 12.0V, At the maximum luminance control, Display mode: SXGA, Horizontal cycle = 1/64.0kHz, Vertical cycle = 1/60.0Hz

Optical characteristics are measured at luminance saturation 20minutes after the product works in the dark room. Also measurement methods are as follows.

Note3: See "4.11.2 Definition of contrast ratio".

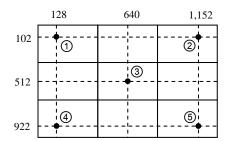
Note4: See "4.11.3 Definition of luminance uniformity".

Note5: These coordinates are found on CIE 1931 chromaticity diagram.

Note6: Product surface temperature: $TopF = 35^{\circ}C$

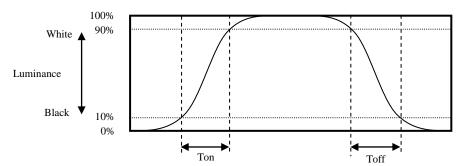
Note7: See "4.11.4 Definition of response times".

Note8: See "4.11.5 Definition of viewing angles".

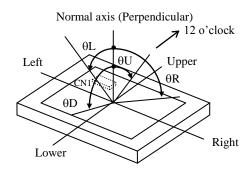

4.11.2 Definition of contrast ratio

The contrast ratio is calculated by using the following formula.

4.11.3 Definition of luminance uniformity


The luminance uniformity is calculated by using following formula.

The luminance is measured at near the 5 points shown below.



4.11.4 Definition of response times

Response time is measured, the luminance changes from "black" to "white", or "white" to "black" on the same screen point, by photo-detector. Ton is the time it takes the luminance change from 10% up to 90%. Also Toff is the time it takes the luminance change from 90% down to 10% (See the following diagram.).

4.11.5 Definition of viewing angles

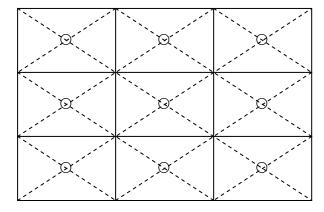
5. ESTIMATED LUMINANCE LIFETIME

The luminance lifetime is the time from initial luminance to half-luminance.

This lifetime is the estimated value, and is not guarantee value.

	Condition	Estimated luminance lifetime (Life time expectancy) Note1, Note2, Note3	Unit
LED elementary	25°C (Ambient temperature of the product) Continuous operation, PWM duty ratio: 100%	94,000	h
substance	70°C (Temperature at LCD panel surface and rear shield surface) Continuous operation, PWM duty ratio: 100%	82,000	h

Note1: Life time expectancy is mean time to half-luminance.


Note2: Estimated luminance lifetime is not the value for LCD module but the value for LED elementary substance.

Note3: By ambient temperature, the lifetime changes particularly. Especially, in case the product works under high temperature environment, the lifetime becomes short.

6. RELIABILITY TESTS

Test i	tem	Condition	Judgment Note1
High temperature (Opera		 60 ± 2°C, RH = 90%, 240hours Display data is white. 	
Heat c (Opera	•	 ① -20 ± 3°C1hour 70 ± 3°C1hour ② 50cycles, 4hours/cycle ③ Display data is white. 	No display malfunctions
Thermal (Non ope		 30 ± 3°C30minutes 80 ± 3°C30minutes 100cycles, 1hour/cycle Temperature transition time is within 5 minutes. 	
Vibra (Non ope		 5 to 100Hz, 11.76m/s² 1 minute/cycle X, Y, Z directions 10 times each direction 	No display malfunctions No physical damages
Mechanica (Non ope		 ① 294m/ s², 11ms ② ±X, ±Y, ±Z directions ③ 3 times each direction 	140 physical damages
ESI (Opera		 150pF, 150Ω, ±15kV 9 places on a panel surface Note2 10 times each place at 1 sec interval 	
I over menagove-	Non-operation	 15 kPa (Equivalent to altitude 13,600m) -30°C±3°C24 hours 80°C±3°C24 hours 	No display malfunctions
Low pressure	Operation	 53.3 kPa (Equivalent to altitude 5,100m) -20°C±3°C24 hours 70°C±3°C24 hours 	

Note1: Display functions are checked under the same conditions as product inspection. Note2: See the following figure for discharge points

7. PRECAUTIONS

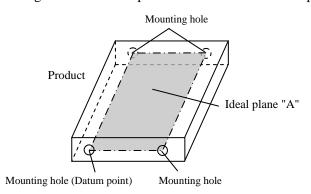
7.1 MEANING OF CAUTION SIGNS

The following caution signs have very important meaning. **Be sure to read "7.2 CAUTIONS" and "7.3 ATTENTIONS"!**

This sign has the meaning that a customer will be injured or the product will sustain damage if the customer practices wrong operations.

This sign has the meaning that a customer will be injured if the customer practices wrong operations.

7.2 CAUTIONS


- * Do not touch the working backlight. There is a danger of burn injury.
- * Do not shock and press the LCD panel and the backlight! There is a danger of breaking, because they are made of glass. (Shock: Equal to or no greater than 294m/s^2 and equal to or no greater than 11 ms, Pressure: Equal to or no greater than 19.6 N ($\phi 16 \text{mm jig}$))

7.3 ATTENTIONS

7.3.1 Handling of the product

- ① Take hold of both ends without touching the circuit board when the product (LCD module) is picked up from inner packing box to avoid broken down or misadjustment, because of stress to mounting parts on the circuit board.
- ② Do not hook or pull cables such as lamp cable, and so on, in order to avoid any damage.
- 3 When the product is put on the table temporarily, display surface must be placed downward.
- 4 When handling the product, take the measures of electrostatic discharge with such as earth band, ionic shower and so on, because the product may be damaged by electrostatic.
- ⑤ The torque for product mounting screws must never exceed $0.67N \cdot m$. Higher torque might result in distortion of the bezel. And the length of product mounting screws from surface of plate (product side) must be ≤ 3.0 mm
- ⑥ The product must be installed using mounting holes without undue stress such as bends or twist (See outline drawings). And do not add undue stress to any portion (such as bezel flat area). Bends or twist described above and undue stress to any portion may cause display mura. Recommended installing method: Ideal plane "A" is defined by one mounting hole (datum point) and other mounting holes. The ideal plane "A" should be the same plane within ±0.3 mm.

- ② Do not press or rub on the sensitive product surface. When cleaning the product surface, wipe it with a soft dry cloth.
- On not push or pull the interface connectors while the product is working.
- When handling the product, use of an original protection sheet on the product surface (polarizer) is recommended for protection of product surface. Adhesive type protection sheet may change color or characteristics of the polarizer.
- We usually liquid crystals don't leak through the breakage of glasses because of the surface tension of thin layer and the construction of LCD panel. But, if you contact with liquid crystal by any chance, please wash it away with soap and water.

7.3.2 Environment

- ① Do not operate or store in high temperature, high humidity, dewdrop atmosphere or corrosive gases. Keep the product in packing box with antistatic pouch in room temperature to avoid dusts and sunlight, when storing the product.
- ② In order to prevent dew condensation occurred by temperature difference, the product packing box must be opened after enough time being left under the environment of an unpacking room. Evaluate the storage time sufficiently because dew condensation is affected by the environmental temperature and humidity. (Recommended leaving time: 6 hours or more with the original packing state after a customer receives the package)
- 3 Do not operate in high magnetic field. If not, circuit boards may be broken.
- ④ This product is not designed as radiation hardened.

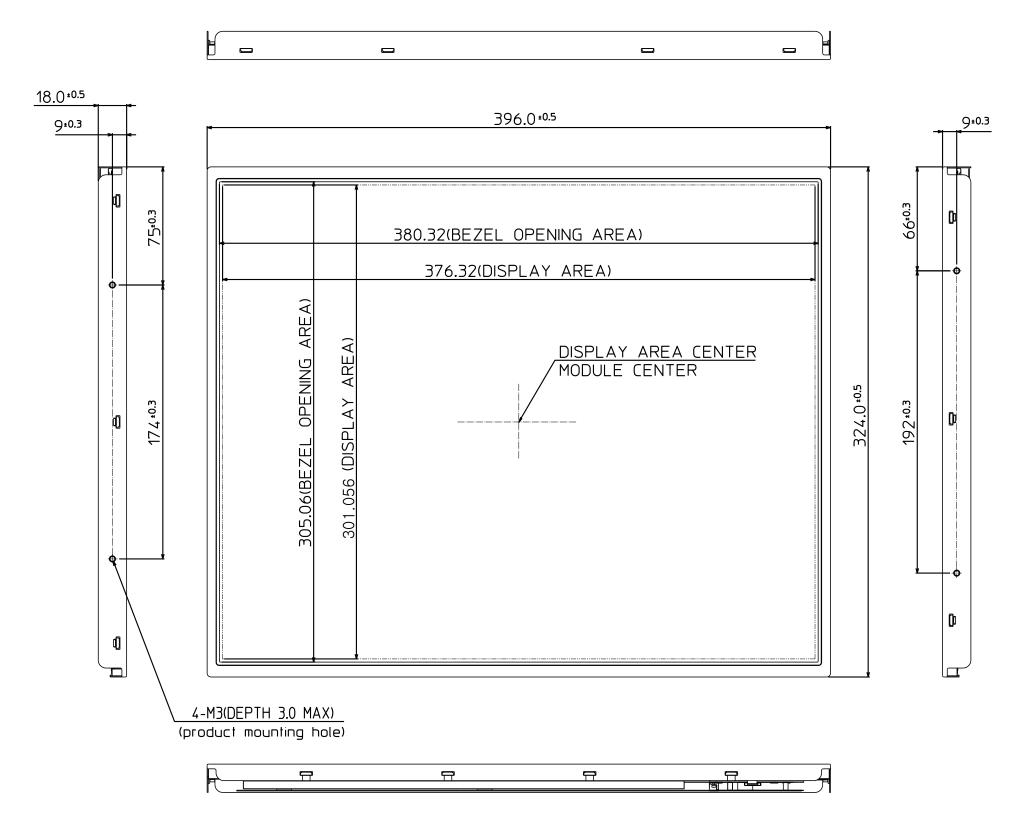
7.3.3 Characteristics

The following items are neither defects nor failures.

- ① Response time, luminance and color may be changed by ambient temperature.
- ② Display mura, flickering, vertical streams or tiny spots may be observed depending on display patterns.
- ③ Optical characteristics (e.g. luminance, display uniformity, etc.) gradually is going to change depending on operating time, and especially low temperature, because the LCD has cold cathode fluorescent lamps.
- ④ Do not display the fixed pattern for a long time because it may cause image sticking. Use a screen saver, if the fixed pattern is displayed on the screen.
- ⑤ The display color may be changed depending on viewing angle because of the use of condenser sheet in the backlight.
- 6 Optical characteristics may be changed depending on input signal timings.
- The interference noise between input signal frequency for this product's signal processing board and luminance control frequency of the LED driver may appear on a display. Set up luminance control frequency of the LED driver so that the interference noise does not appear.

7.3.4 Others

- ① All GND, VDD, GNDB and VDDB terminals should be used without any non-connected lines.
- ② Do not disassemble a product or adjust variable resistors.
- ③ The LCD module by itself or integrated into end product should be packed and transported with display in the vertical position. Otherwise the display characteristics may be degraded.
- 4 Pack the product with the original shipping package, in order to avoid any damages during transportation, when returning the product to NLT.
- The information of China RoHS directive six hazardous substances or elements in this product is as follows.

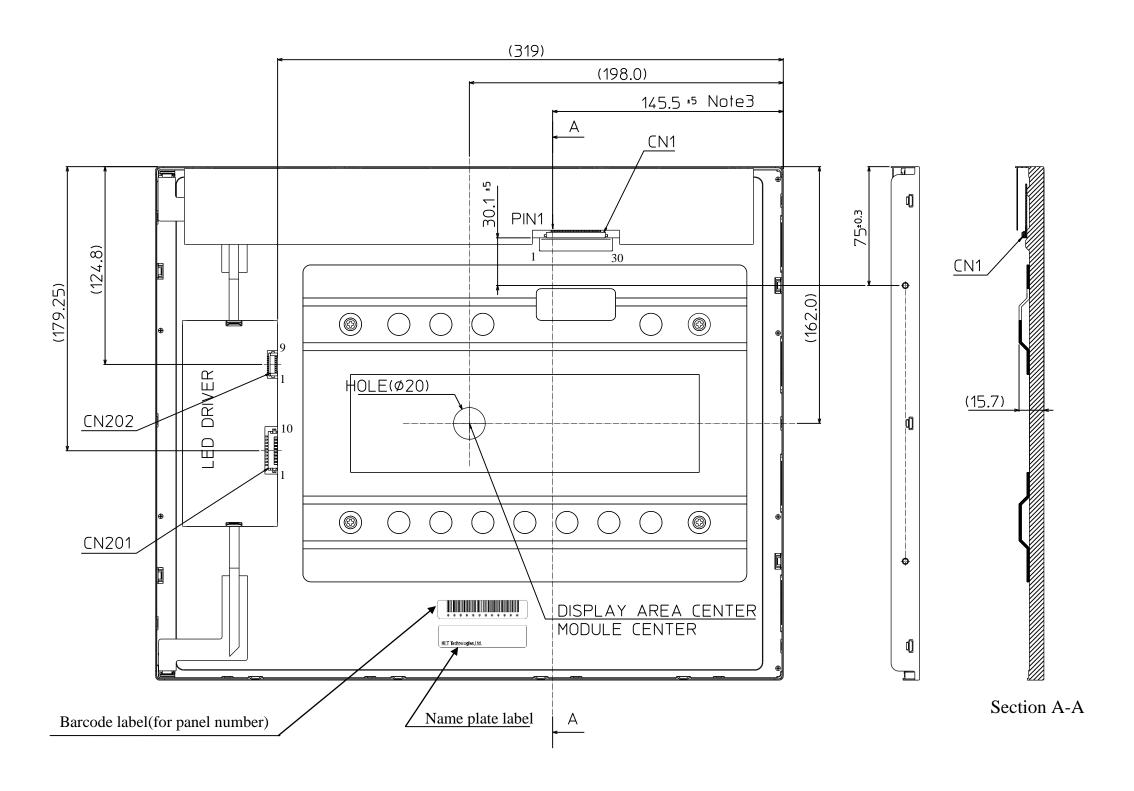

	China RoHS directive six hazardous substances or elements											
Lead (Pb)	Mercury (Hg)	Cadmium (Cd)	Hexavalent Chromium (Cr VI)	Polybrominated Biphenys (PBB)	Polybrominated Biphenyl Ethers (PBDE)							
×	0	0	0	0	0							

- Note1: O:This indicates that the poisonous or harmful material in all the homogeneous materials for this part is equal or below the limitation level of SJ/T11363-2006 standard regulation.
 - X: This indicates that the poisonous or harmful material in all the homogeneous smaterials for this part is above the limitation level of SJ/T11363-2006 standard regulation.

NLT Technologies NL128102AC29-17

8. OUTLINE DRAWINGS

8.1 FRONT VIEW



Note1: The torque for product mounting screws must never exceed $0.67N \cdot m$. And the length of product mounting screws from surface of plate (product side) must be ≤ 3.0 mm.

Unit: mm

NLT Technologies NL128102AC29-17

8.2 REAR VIEW

Note1: The values in parentheses are for reference.

Note2: The torque for product mounting screws must never exceed $0.67N \cdot m$. And the length of product mounting screws from surface of plate (product side) must be ≤ 3.0 mm.

Note3: The dimension to the center of CN1-Pin No 1

Unit: mm