

(v)	Preliminary Specifications	S
(Final Specifications	

Module	22.9 Inch Monitor
Model Name	G229HAF01.0

Customer	Date	Approved by	Date
	Or PROMATE	Crystal Hsieh	2019. 01. 15
Checked & Approved by	Date	Prepared by	Date
	auo co	HsinYin Lee	2019. 01. 15
Customer's si	gn back page	General Display Bu AU Optronics	

AU OPTRONICS CORPORATION

Contents

1. Operating Frecautions	-
2. General Description	5
2.1 Display Characteristics	5
2.2 Optical Characteristics	5
3. Absolute Maximum Ratings	11
3.1 Absolute Ratings of Set Module	
3.2 Absolute Ratings of Environment	11
4. Electrical Characteristics	13
4.1 Set Module	13
5. Signal Characteristic	
5.1 Pixel Format Image	
5.2 Signal Description	17
5.3 LCM Timing Characteristics	17
6. Reliability Test Criteria	21
7. Mechanical Characteristics	
7.1 Set Outline Dimension	22
8. Label and Packaging	23
8.1 Shipping Label	23
8.2 Carton Package	24
8.3 Shipping Package of Palletizing Sequence	25
9 Safety	
9.1 Sharp Edge Requirements	26
9.2 Materials	26
9.3 Capacitors	26
9.4 National Test Lah Requirement	26

AU OPTRONICS CORPORATION

Version	Date (yyyy/m/d)	Page	Old description	New Description
0.1	2019/01/15	All	Cour. Stuar	first edition
			10 = 10co 123.	
			PARTE ATO	
			204, 205,	
		1	36 301	
		60,		
				- call
			ntla	e
			afia 10	
			Co, Sugar	<u> </u>
			MO = 10, 6.53.	
			APTHAN	
			"OL, "OJ,	
			54 301,	
		to,		
				4.1
			18 nch	se
			anfilo all	
			Co	
			PACE 100 10:23.	
			AP CIA	
			20, 'do',	
		105	70	
		40.		
				4.4
			42	Out
			Confidential Confi	
				G229HAF01.

1. Operating Precautions

- 1) Since front polarizer is easily damaged, pay attention not to scratch it.
- 2) Be sure to turn off power supply when inserting or disconnecting from input connector.
- 3) Wipe off water drop immediately. Long contact with water may cause discoloration or spots.
- 4) When the monitor surface is soiled, wipe it with absorbent cotton or other soft cloth.
- 5) Since the monitor is made of glass, it may break or crack if dropped or bumped on hard surface.
- 6) Since CMOS LSI is used in this module, take care of static electricity and insure human earth when handling.
- 7) Do not open or modify the monitor Assembly.
- 8) In case if a monitor has to be put back into the packing container slot after it was taken out from the container, do not press the center of LED light bar edge. Instead, press at the far ends of the LED light bar edge softly.
 Otherwise the monitor may be damaged.
- 9) At the insertion or removal of the Signal Interface Connector, be sure not to rotate nor tilt the Interface Connector of the TFT Module.
- 10) After installation of the monitor into an enclosure, do not twist nor bend the monitor even momentarily. While designing the enclosure, it should be taken into consideration that no bending/twisting forces are applied to the monitor from outside. Otherwise the monitor may be damaged.
- 11) Small amount of materials having no flammability grade is used in the monitor. The monitor should be supplied by power complied with requirements of Limited Power Source (IEC60950-1 or UL60950-1), or be applied exemption.
- Micro USB only support read Image/Video files, don't connector 5V of USB from another host like PC ,mobile phone

AU OPTRONICS CORPORATION

2. General Description

This specification applies to the 22.9 inch wide color a-Si TFT-LCD monitor G229HAF01.0. The screen format is intended to support the resolution 1920(H) x 165(V)) and 16.7M colors.

2.1 Display Characteristics

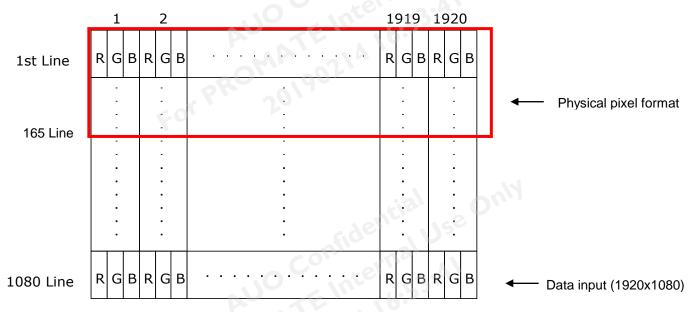
The following items are characteristics summary on the table under 25 °C condition:

	Model	G229HAF01.0		
Panel	LCD Size	22.9 inch		
	Light Source	LÉD		
	Active Area	578.88(H) x 49.7475(V) mm		
	Resolution	1920 x 165 (suggest), 1920*1080, *1		
	Aspect Ratio	12:1		
	Brightness (typ.)	700cd/m ²		
	Contrast Ratio (typ.)	1000:1		
	Response Time	25ms (Tr+Tf)		
	Frame Rate	60 Hz		
	Viewing Angle	89 / 89 / 89 / 89 degree		
	Light Life	50,000 hrs (min.)		
	Panel Surface	Anti-Glare type, 3H, Haze 25%		
	Color gamut	72% NTSC		
	Display Color	8bit, 16.7M		
Power	Power supply	AC 100V-240V, 50-60Hz, 0.98A (typ.)		
rowei	Power consumption	12W (typ.)		
	Signal input	Micro HDMI x 1 (support DDC/CI function), *2 Micro USB x 1 (Support Image/Video), *3		
	Dimension (Lx W x D)	587.08 x 62.05 x 16.5 mm		
Display	Weight(Net)	690g (typ.)		
	Border width (U/D/R/L)	3.4 / 8.9 / 4.1 / 4.1 mm		
	Wall Mounting	M3 *4mm / Pitch 190mm		
	Operation Temp	0°C ~50°C		
Environment	Storage Temp	-20°C ~ 60°C		
	Operating Humidity	5% ~ 80% RH		

3229HAF01.0 rev.0.1

G229HAF01.0

AU OPTRONICS CORPORATION


_	Storage Humidity	5% ~ 80% RH
	Display Orientation	Landscape
Δ.	Power cable	3 in 1 (US/JPN/TW) x1
Accessory	Adaptor	12V, 3A x 1

AU OPTRONICS CORPORATION

* Note I: Resolution

Following figure shows the relationship of the input signals and LCD pixel format. This panel resolution is 1920x165, and for another support input 1920x1080 format signal to it. And the data after line 165 (inlculde 165) All should be set to "black" command.

*Note2 : DDC/CI command

Destination Address	Source Address	Length	Set VCP Feature Command	VCP Opcode	High Byte	Low Byte	Checksum	Stop Bit	Range	Technology				
				10	00	00~64	A8~CC	Р	0~100	Backlight				
				14	00	0C	A0	Р		BL enable				
6E	51	51 84	03	03	14	00	0D	A1	Р		BL disable			
									60	00	04	DC	Р	
				00	00	09	D1	Р		F/W update				

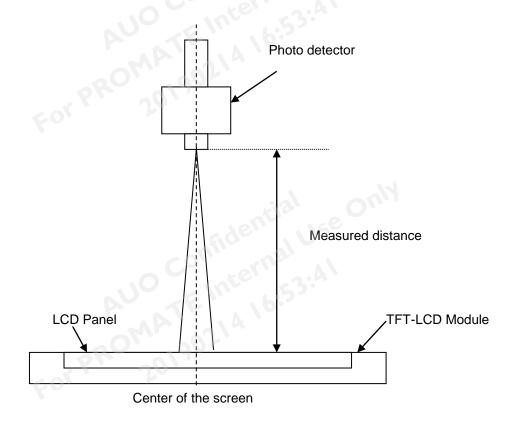
*Note3: USB function

			00	00	09	D1
*Note3 : USB	function	nfid	6.			
	Support	Soluti	ion	2.4		
lma a ma	JPEG (Baseline)	TE !!		2		
Image	BMP(TBD)	1920 x 165 (sugges	st),		
Vi da a	MPEG4(TBD)	1920*10	80, *1			
Video	H.264	50,				

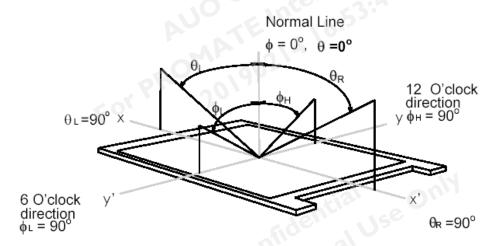
AU OPTRONICS CORPORATION

2.2 Optical Characteristics

The optical characteristics are measured under stable conditions at 25 °C:


Item	Unit	Conditions	Min.	Тур.	Max.	Note
	AU.	Horizontal (Right)	-	89 89	-	
Viewing Angle	[degree]	CR >10 (Left) Vertical (Up)		89	_	2
	$\langle O \rangle$	Vertical (Up) CR > 10 (Down)	-	89	-	
Contrast ratio	30	Normal Direction	800	1000	-	3
		Raising Time (T _{rR})	-	13	-	
Response Time	[msec]	Falling Time (T _{rF})	-	12	-	4
		Raising + Falling	-	25	-	
		Red x	TBD	TBD	TBD	
		Red y	TBD	TBD	TBD	
	,	Green x	TBD	TBD	TBD	
Color / Chromaticity	. 10	Green y	TBD	TBD	TBD	5
Coordinates (CIE1931)	ROMA 20	Blue x	TBD	TBD	TBD	
,		Blue y	TBD	TBD	TBD	
		White x	TBD	TBD	TBD	
		White y	TBD	TBD	TBD	
Central Luminance	[cd/m ²]		560	700	-	6
Luminance Uniformity	[%]		70	75	-	7
Color Gamut	%		-	72	-	

AU OPTRONICS CORPORATION


Note 1: Measurement method

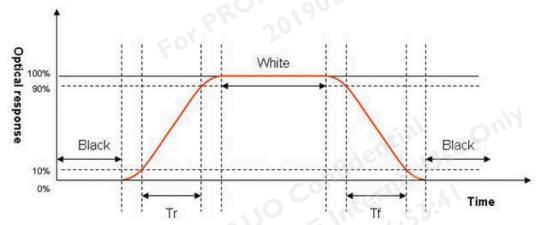
The monitor should be stabilized at given temperature for 30 minutes to avoid abrupt temperature change during measuring (at surface 35oC). In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 30 minutes in a stable, windless and dark room.

Note 2: Definition of viewing angle measured by ELDIM (EZContrast 88)

Viewing angle is the measurement of contrast ratio \geq 10, at the screen center, over a 180° horizontal and 180° vertical range (off-normal viewing angles). The 180° viewing angle range is broken down as follows; 90° (θ) horizontal left and right and 90° (Φ) vertical, high (up) and low (down). The measurement direction is typically perpendicular to the display surface with the screen rotated about its center to develop the desired measurement viewing angle.

Note 3: Contrast ratio is measured by TOPCON SR-3

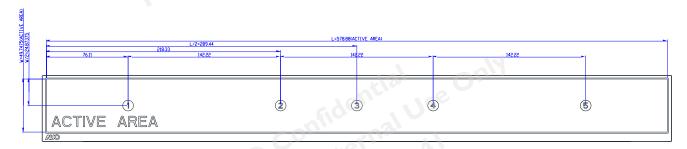
Contrast ratio (CR)=


AU OPTRONICS CORPORATION

Brightness on the "White" state

Brightness on the "Black" state

Note 4: Definition of Response time measured by Westar TRD-100A


The output signals of photo detector are measured when the input signals are changed from "White" to "Black" (falling time) and from "Black" to "White" (rising time), respectively. The response time interval is between 10% and 90% of amplitudes. Please refer to the figure as below.

Note 5: Color chromaticity and coordinates (CIE) is measured by TOPCON SR-3

Note 6: Central luminance is measured by TOPCON SR-3

Note 7: Luminance uniformity of these 5 points is defined as below and measured by TOPCON SR-3

Uniformity = $\frac{\text{Minimum Luminance in 9 points (1-5)}}{\text{Maximum Luminance in 9 Points (1-5)}}$

AU OPTRONICS CORPORATION

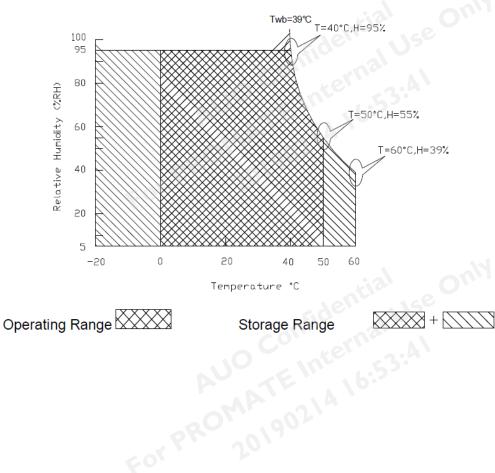
3. Absolute Maximum Ratings

3. Absolute Maximum Ratings									
3.1 Absolute Ratings of Monitor									
Item	Symbol	Min	Max	Unit	Conditions				
Logic/LCD Drive Voltage	VDD	-0.3	16	[Volt]					
Logic/LCD Drive Voltage	VHDMI	-0.3	7	[Volt]					
Micro USB	VBUS1	-0.3	7	[Volt]					

3.2 Absolute Ratings of Environment

Item	Symbol	Min.	Max.	Unit	Conditions
Operating Temperature	TOP	0	50	[°C]	
Operation Humidity	НОР	5	80	[%RH]	No.45 2 8 4
Storage Temperature	TST	-20	60	[°C]	Note 3 & 4
Storage Humidity	HST	5	80	[%RH]	

Note 1: With in Ta (25 °C)


Note 2: Permanent damage to the device may occur if exceeding maximum values

ي ming Ir el surface ter Note 3: For quality perfermance, please refer to AUO IIS(Incoming Inspection Standard).

Note 4: Operation Temperature +60°C is defined as panel surface termperature.

AU OPTRONICS CORPORATION

AU OPTRONICS CORPORATION

4. Electrical Characteristics

4.1 Set Module

4.1.1 Power Specification

Input power specifications are as follows:

Symbol	Parameter	Min	Тур	Max	Unit	Conditions
VDD	Logic/LCD Drive Voltage	10	12	13.2	[Volt]	+/-10%
IDD	Input Current	-	TBD	TBD	[A]	VDD= 12V, All White Pattern At 60Hz,
PDD	VDD Power	-	TBD	TBD	[Watt]	VDD=12V, All White Pattern At 60Hz
IRush	Inrush Current	-	Copfic	TBD	[A]	Note 1
VDDrp	Allowable Logic/LCD Drive Ripple Voltage	AN	TE.	300	[mV] p-p	VDD= 12V, All White Pattern At 60Hz

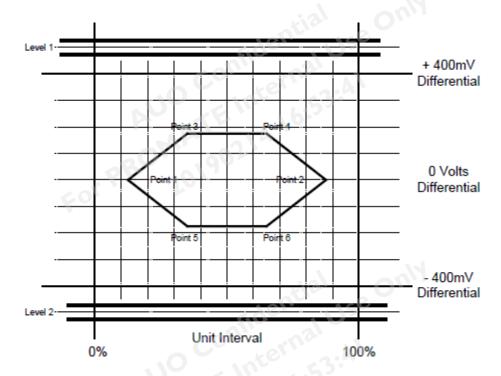
Note 1: Turn On delay time less than 10 seconds at input voltage is 100-240Vac

HDMI Port +5V output power specifications are as follows:

Symbol	Parameter	Min	Тур	Max	Unit	Conditions
VHDMI	Logic/Drive Voltage	4.75	5	5.25	[Volt]	+/-5%
IHDMI	Output Current	AA.	E.	TBD	[A]	HDMI Mode, All White Pattern At 60Hz,
PVHDMI	HDMI Power	0,	307	TBD	[Watt]	HDMI Mode, All White Pattern At 60Hz
IRush	Inrush Current	-	-	0.6	[A]	
VHDMIrp	Allowable Logic/Drive Ripple Voltage	-	-	300	[mV] p-p	Data link with a HDMI Monitor

AU OPTRONICS CORPORATION

USB Port +5V output power specifications are as follows:


Symbol	Parameter	Min	Тур	Max	Unit	Conditions				
VBUS1	Logic/Drive Voltage	4.75	5	5.25	[Volt]	+/-5%				
IBUS1	Output Current	OWE	TBD	TBD	[A]	Connected with a USB Device				
PVBUS1	USB Power	30		TBD	[Watt]	Connected with a USB Device				
IRush	Inrush Current	-	-	4	[A]					
VBUS1rp	Allowable Logic/Drive Ripple Voltage	-	-	300	[mV] p-p	Data link with a USB Device				
VBUS1rp Allowable Logic/Drive Ripple Voltage 300 [mV] p-p Data link with a USB Device										

4.1.2 Signal Electrical Characteristics

AU OPTRONICS CORPORATION										
4.1.2 Signal Electrical Characteristics										
Characterist	tics of USB Port are as follo	ows:								
Symbol	Parameter	Min	Тур	Max	Units	Condition				
VTH	Differential Input High Threshold	50	EInc	+525	mV	VICM = 1.6V Note 1				
VTL	Differential Input Low Threshold	-525	05/4	-	mV	VICM = 1.6V Note 1				
VID	Input Differential Voltage	175	-	525	mV	Note 1				
VICM	Differential Input Common Mode Voltage		1.6		V	VTH-VTL = 1.05V (max) <i>Note 1</i>				

Note 1: USB Port, Transmit Waveform Requirement.

AU OPTRONICS CORPORATION

5. Signal Characteristic

5.1 Pixel Format Image

Following figure shows the relationship between input signal and LCD pixel format.

		1			2		10 Inte	1	91	9	19	920)	
1st Line	R	G	В	R	G	В	MATERIA	R	G	В	R	G	В	
		-			-		PROZOTO		-			-		
									-			-		
												•		
		:			:		: :					•		
		•			•		Ede		•			58		
165 Line	R	G	В	R	G	В	o.com	R	G	В	R	G	В	
							MATERIA		9.					

1

AU OPTRONICS CORPORATION

5.2 Signal Description

Physical interface is described as for the connector on module. These connectors are capable of accommodating the following signals and will be following components.

Micro USB Connector 5.2.1

Connector Name / Designation	Interface Connector / Interface card
Manufacturer	Hirose Electric Co Ltd
Type Part Number	ZX62D-AB-5P8(30)
Mating Housing Part Number	TBD

The USB Port are support both Micro A and Micro B Connector.

Pin Assignment

Pin#	Signal Name	A
1	+5V	02
2	Data-	
3	Data+	
4	ID	
5	GND	
Note1: Start	from right side	onfidential Use Only EInternal Use Only EInternal Use

Note1: Start from right side

AU OPTRONICS CORPORATION

5.2.2 Micro HDMI Connector

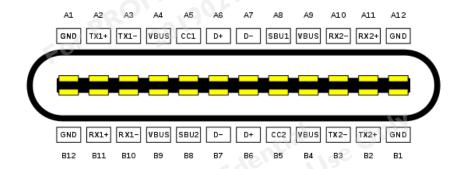
Connector Name / Designation	Micro HDMI Connector
Manufacturer	TBD
Connector Model Number	TBD
Mating Connector Model Number	TBD
Assignment	201907

Pin Assignment

Pin#	Symbol	Signal Name
1	HOT Plug Detect	HOT Plug Detect
2	Utility	NC CONTRACTOR
3	TMDS Data2+	Positive HDMI differential data input (2)
4	TMDS Data2 Shield	Power Ground
5	TMDS Data2-	Negative HDMI differential data input (2)
6	TMDS Data1+	Positive HDMI differential data input (1)
7	TMDS Data1 Shield	Power Ground
8	TMDS Data1-	Negative HDMI differential data input (1)
9	TMDS Data0+	Positive HDMI differential data input (0)
10	TMDS Data0 Shield	Power Ground
11	TMDS Data0-	Negative HDMI differential data input (0)
12	TMDS Clock+	Positive HDMI clock input (0)
13	TMDS Clock Shield	Power Ground
14	TMDS Clock-	Negative HDMI clock input (0)
15	CEC	CEC
16	DDC/CEC Ground	Power Ground
17	SCL	No contact (For AUO internal use)
18	SDA	No contact (For AUO internal use)

AU OPTRONICS CORPORATION

Power Input


2.3 Type C Connector	
wer Input	edell Use
Connector Name / Designation	Connector
Manufacturer	Take Wing Technology CO. Ltd
Connector Model Number	UCF008-A2130000-AS
Mating Connector Model Number	TBD

Power output

Connector Name / Designation	Connector
Manufacturer	Hirose
Connector Model Number	CX90B1-24P
Mating Connector Model Number	TBD

Pin Assignment

Pin#	Symbol	Signal Name	
A1	GND	Ground	
A12	GND	Ground	
B1	GND	Ground	
B12	GND	Ground	
Other	Other	None	1-1
Other	Other	None	$O_{U/I}$
A4	VBUS	12V	
A9	VBUS	12V	
B4	VBUS	12V	
В9	VBUS	12V	

AU OPTRONICS CORPORATION

5.3 LCM Timing Characteristics

Vertical Section Period Tv - 195 - Active TvD 165 TLine Blanking TvB - 30 - Period TH - 3420 -	Clock frequency 1/ T _{Clock} - 40 - Vertical Section Period T _V - 195 - Active T _{VD} 165 Blanking T _{VB} - 30 - Period T _H - 3420 - Horizontal T _{VB} - 1920	i aiai	neter	Symbol	Min.	Тур.	Max.	Unit
Vertical Section Period Tv - 195 - Active TvD 165 TLine Blanking TvB - 30 - Period TH - 3420 -	Vertical Section Period Tv - 195 - Blanking TvB - 30 - Period TH - 3420 -	Frame Rate		-	OUL	60	-	Hz
Vertical Section Active TvD 165 TLine Blanking TvB - 30 - Period TH - 3420 -	Vertical Section Active TvD 165 Blanking TvB - 30 - Period TH - 3420 -			1/ Tclock	1-06	40	A -	MHz
Section Active TVD To5 TLine Blanking TvB - 30 - Period TH - 3420 -	Section Active TVD 165 Blanking TvB - 30 - Period TH - 3420 -		Period	Tv	-	195	-	T_{Line}
Blanking T _{VB} - 30 -	Blanking T _{VB} - 30 -		Active	TvD	27.14	165		
Horizontal	Horizontal		Blanking	T _{VB}		30	-	
Horizontal Section Active ThD 1920 Tolock Blanking ThB - 1500 -	Horizontal Section Active ThD 1920 Blanking ThB - 1500 -		Period	Тн	-	3420	-	
Blanking T _{HB} - 1500 -	Blanking T _{HB} - 1500 -	Horizontal Section	Active	T _{HD}		1920		Tclock
AUO Confidential Use Only	For PROMATE Internal Use Only	Occilon	Blanking	Тнв	-	1500	-	

AU OPTRONICS CORPORATION

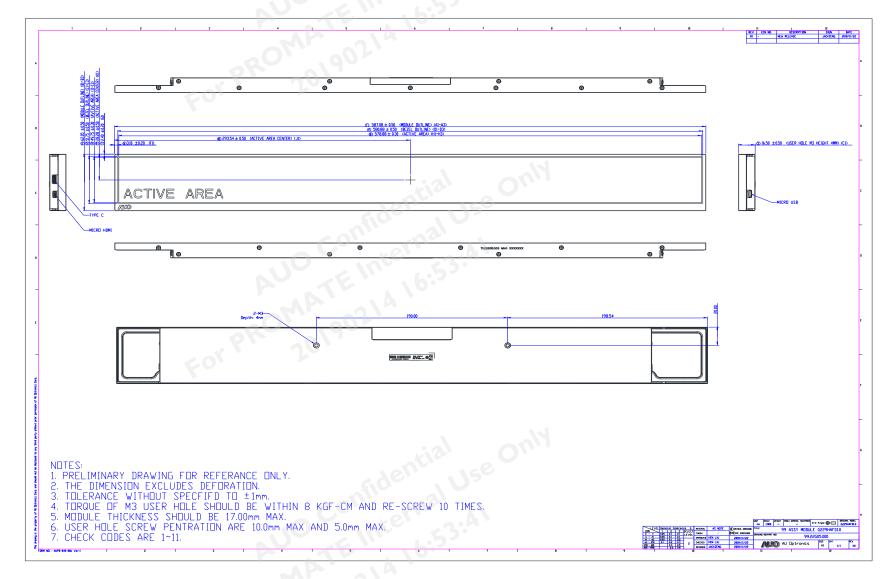
6. Reliability Test Criteria

Environment test conditions are listed as following table.

Items	Required Condition	Note
Temperature Humidity Bias (THB)	Ta= 50°C, 80%RH, 300hours	
High Temperature Operation (HTO)	Ta= 50°C, 300hours	3
Low Temperature Operation (LTO)	Ta= 0°C, 300hours	
High Temperature Storage (HTS)	Ta= 60°C, 300hours	
Low Temperature Storage (LTS)	Ta= -20°C, 300hours	
Vibration Test (Non-operation)	Acceleration: 1.5 G Wave: Random Frequency: 10 - 200 Hz Sweep: 30 Minutes each Axis (X, Y, Z)	
Shock Test (Non-operation)	Acceleration: 50 G Wave: Half-sine Active Time: 20 ms Direction: ±X, ±Y, ±Z (one time for each Axis)	
Drop Test	Height: 60 cm, package test	
Thermal Shock Test (TST)	-20°C /30min, 60°C /30min, 100 cycles	1
On/Off Test	On/10sec, Off/10sec, 30,000 cycles	
FCD /Flooting Statio Disable	Contact Discharge: \pm 8KV, 150pF(330 Ω) 1sec, 25 times/ point.	2
ESD (Electro Static Discharge)	Air Discharge: ± 15KV, 150pF(330Ω) 1sec 25 times/ point.	2

Note 1: The TFT-LCD module set will not sustain damage after being subjected to 100 cycles of rapid temperature change. A cycle of rapid temperature change consists of varying the temperature from -20°C to 60°C, and back again. Power is not applied during the test. After temperature cycling, the unit is placed in normal room ambient for at least 4 hours before power on.

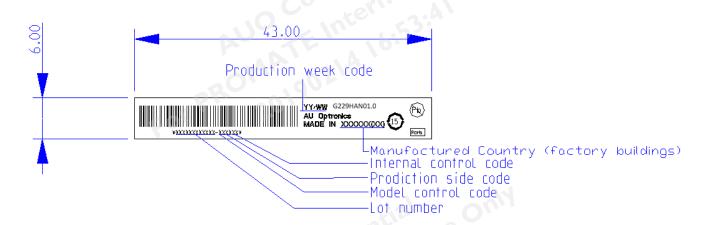
Note 2: According to EN61000-4-2, ESD class B: Some performance degradation allowed. No data lost. Self-recoverable. No hardware failures.


Note 3: No function occurs Mura shall be ignored after high temperature reliability test.

AU OPTRONICS CORPORATION

7. Mechanical Characteristics

7.1 Monitor Outline Dimension


AU OPTRONICS CORPORATION

Product Specification

8. Label and Packaging

8.1 Shipping Label

Unit: mm

Note 1: For Pb Free products, AUO will add for identification.

Note 2: For RoHS compatible products, AUO will add RoHS for identification.

Note 3: For China RoHS compatible products, AUO will add for identification.

Note 4: The Green Mark will be presented only when the green documents have been ready by AUO Internal Green Team.

AU OPTRONICS CORPORATION

8.2 Carton Package

1. Put a protective film on the panel and fix it with masking tape

2. Panel into the electrostatic bag and Fold the remaining electrostatic bag back

3. Put first layer of EPE

4. Put panel in the middle of EPE, Visible area facing up, and accessories put into the side groove.

4-1. Accessory placement method

5. Finish the first layer and put it in the second layer

6. Finish the second layer and put it in the . th third layer.

7. Cover with EPE cushion.

8. Sealing the carton with packing tape

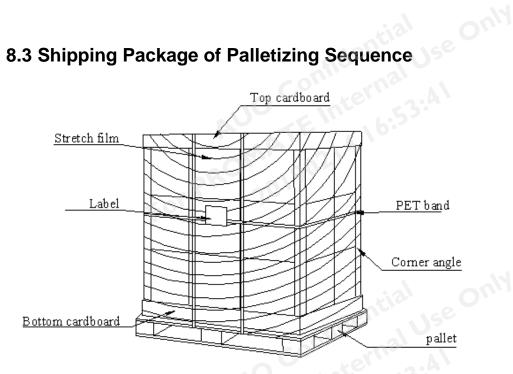
AU OPTRONICS CORPORATION

Palletizing sequence

The operation of taking shape and related information of full carton:

Max capacity: 6 monitors per carton Max weight: 9~10kg per carton (TBD)

Outside dimension of carton: 730mm(L)* 310mm(W)* 285mm(H)


Pallet size: 980mm * 740 mm * 132mm(M25)

Box stacked

Module by air : (1 *3) *4 layers , one pallet put 12 boxes , total 72 pcs monitors

Module by sea: One pallet (1 *3) *4 layers + One pallet (1 *3) *2 layers, total 108 pcs monitors

Module by sea_ HQ:(1 *3) *4 layers + One pallet (1 *3) *3 layers Total 126 pcs monitors

ltem		Specification				
		Q'ty	Dimension	Weight (Kg)		
1	Packing Box	6 pcs/Box	73(L)cm x 31(W)cm x 28.5(H)cm	9~10(TBD)		
2	Pallet	1	98(L)cm x 74 (W)cm x 13.2(H)cm	12.4		
3	Pallet after Packing	12boxes/pallet	98(L)cm x 74(W) cm x 127.2(H) cm	108~120(TBD)		

AU OPTRONICS CORPORATION

9.1 Sharp Edge Requirements

There will be no sharp edges or comers on the display assembly that could cause injury.

9.2 Materials

9.2.1 Toxicity

There will be no carcinogenic materials used anywhere in the display module. If toxic materials are used, they will be reviewed and approved by the responsible AUO toxicologist.

9.2.2 Flammability

All components including electrical components that do not meet the flammability grade UL94-V1 in the module will complete the flammability rating exception approval process.

The printed circuit board will be made from material rated 94-V1 or better. The actual UL flammability rating will be printed on the printed circuit board.

9.3 Capacitors

If any polarized capacitors are used in the display assembly, provisions will be made to keep them from being inserted backwards.

9.4 National Test Lab Requirement

The display module will satisfy all requirements for compliance to: iation Technology

UL 60950-1 second edition

U.S.A. Information Technology Equipment