

📄 Datash

Datasheet LD490EUN-UHA1

More Value!

If you require a touch panel and/or mechanical integration, please scan the QR code or click the URL **www.avnet-embedded.eu/products/displays**

SPECIFICATION FOR APPROVAL

() Preliminary Specification

(•) Final Specification

Title

49.0" WUXGA TFT LCD

BUYER	AVNET		
MODEL			

SUPPLIER	LG Display Co., Ltd.	
*MODEL	LD490EUN	
SUFFIX	UHA1 (RoHS Verified)	

APPROVED BY	SIGNATURE DATE
/	
/	
Please return 1 copy for your your signature and co	

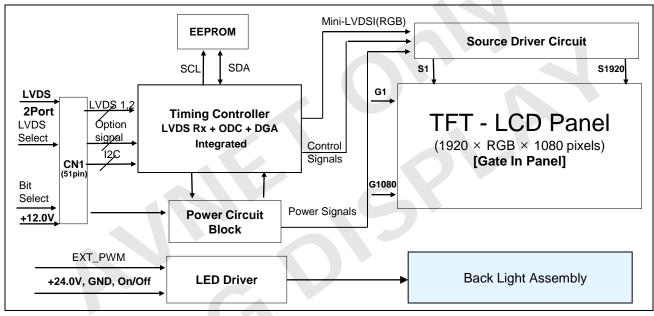
APPROVED BY H. J. Song / Team Leader	SIGNATURE DATE
REVIEWED BY	
J.B. Chun / Project Leader	
PREPARED BY	
H. J. Park	
/ Engineer	
Commercial Product De LG Display Co.,	

CONTENTS

Number	ITEM	Page
	COVER	1
	CONTENTS	2
	RECORD OF REVISIONS	3
1	GENERAL DESCRIPTION	4
2	ABSOLUTE MAXIMUM RATINGS	5
3	ELECTRICAL SPECIFICATIONS	6
3-1	ELECTRICAL CHARACTERISTICS	6
3-2	INTERFACE CONNECTIONS	8
3-3	SIGNAL TIMING SPECIFICATIONS	11
3-4	LVDS SIGNAL SPECIFICATIONS	12
3-5	COLOR DATA REFERENCE	15
3-6	POWER SEQUENCE	16
4	OPTICAL SPECIFICATIONS	18
5	MECHANICAL CHARACTERISTICS	22
6	RELIABILITY	25
7	INTERNATIONAL STANDARDS	26
7-1	SAFETY	26
7-2	ENVIRONMENT	26
8	PACKING	27
8-1	Information of LCM Label	27
8-2	PACKING FORM	27
9	PRECAUTIONS	28
9-1	MOUNTING PRECAUTIONS	28
9-2	OPERATING PRECAUTIONS	28
9-3	ELECTROSTATIC DISCHARGE CONTROL	29
9-4	PRECAUTIONS FOR STRONG LIGHT EXPOSURE	29
9-5	STORAGE	29
9-6	APPROPRATE CONDITION FOR COMMERCIAL DISPLAY	29

RECORD OF REVISIONS

Revision No.	Revision Date	Page	Description
1.0	Sep. 4. 2014	-	Final Specification
1.1	Oct. 30. 2014	25	Update Reliability Test Condition


1. General Description

The LD490EUN is a Color Active Matrix Liquid Crystal Display with an integral Light Emitting Diode (LED) backlight system. The matrix employs a-Si Thin Film Transistor as the active element.

It is a transmissive display type which is operating in the normally black mode. It has a 48.50 inch diagonally measured active display area with WUXGA resolution (1080 vertical by 1920 horizontal pixel array). Each pixel is divided into Red, Green and Blue sub-pixels or dots which are arrayed in vertical stripes. Gray scale or the luminance of the sub-pixel color is determined with a 10-bit gray scale signal for each dot. Therefore, it can present a palette of more than 1.07Bilion colors.

It has been designed to apply the 10-bit 2-port LVDS interface.

It is intended to support Commercial Display where high brightness, super wide viewing angle, high color gamut, high color depth and fast response time are important.

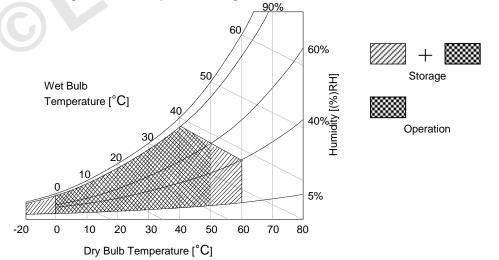
General Features

Active Screen Size	48.50 inches(1232.00mm) diagonal
Outline Dimension	1091.6(H) × 621.8(V) × 12.7(B) / 31.2(V) mm (Typ.)
Pixel Pitch	0.55926 mm x 0.55926 mm
Pixel Format	1920 horiz. by 1080 vert. Pixels, RGB stripe arrangement
Color Depth	10bit(D), 1.07 Bilion colors
Luminance, White	700 cd/m ² (Center 1point ,Typ.)
Viewing Angle (CR>10)	Viewing angle free (R/L 178 (Min.), U/D 178 (Min.))
Power Consumption	Total 99.6W (Typ.) [Logic= 8.7W, LED Driver=90.9W(ExtVbr_B=100%)]
Weight	11.8Кg (Тур)
Display Mode	Transmissive mode, Normally black
Surface Treatment	Hard coating(3H), Anti-glare treatment of the front polarizer (Haze 10%)
Possible Display Type	Landscape and Portrait Enabled

2. Absolute Maximum Ratings

The following items are maximum values which, if exceeded, may cause faulty operation or permanent damage to the LCD module.

Table 1. ABSOLUTE MAXIMUM RATINGS


Parameter		Symbol	Value		Unit	Notes
		Symbol	Min	Max	Unit	Notes
Dower Input Voltage	LCD Circuit	VLCD	-0.3	+14.0	Vdc	
Power Input Voltage	Driver	VBL	-0.3	+ 27.0	Vdc	
	ON/OFF	Voff / Von	-0.3	+3.9	Vdc	1
Driver Control Voltage	Brightness	EXTVBR-B	-0.3	+5.5	VDC	
	Status	Status	-0.3	+3.9		
T-Con Option Selection	Voltage	VLOGIC	-0.3	+4.0	VDC	
Operating Temperature		Тор	0	+50	°C	2.2
Storage Temperature		Tst	-20	+60	°C	2,3
Panel Front Temperature		TSUR	-	+68	°C	4
Operating Ambient Humidity		Нор	10	90	%RH	2.2
Storage Humidity		Нѕт	5	90	%RH	2,3

Notes 1. Ambient temperature condition (Ta = 25 ± 2 °C)

2. Temperature and relative humidity range are shown in the figure below.

Wet bulb temperature should be Max 39°C, and no condensation of water.

- 3. Gravity mura can be guaranteed below 40°C condition.
- 4. The maximum operating temperatures is based on the test condition that the surface temperature of display area is less than or equal to 68°C with LCD module alone in a temperature controlled chamber. Thermal management should be considered in final product design to prevent the surface temperature of display area from being over 68°C. The range of operating temperature may be degraded in case of improper thermal management in final product design.

3. Electrical Specifications

3-1. Electrical Characteristics

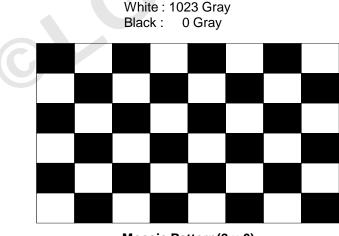

It requires two power inputs. One is employed to power for the LCD circuit. The other Is used for the LED backlight and LED Driver circuit.

Table 2. ELECTRICAL CHARACTERISTICS

Parameter	Symbol	Value			Unit	Note	
Falametei	Symbol	Min	Тур	Max	Onit	Note	
Circuit :							
Power Input Voltage	VLCD	10.8	12.0	13.2	VDC		
Power Input Current	ILCD	-	727	945	mA	1	
		-	986	1282	mA	2	
Power Consumption	PLCD	-	8.7	11.3	Watt	1	
Rush current	IRUSH	-	-	8.0	А	3	

Notes 1. The specified current and power consumption are under the V_{LCD}=12.0V, Ta=25 \pm 2°C, f_V=60Hz condition, and mosaic pattern(8 x 6) is displayed and f_V is the frame frequency.

- 2. The current is specified at the maximum current pattern.
- 3. The duration of rush current is about 2ms and rising time of power input is 0.5ms (min.).
- 4. Ripple voltage level is recommended under \pm 5% of typical voltage
- 5. Maximum of Power Input Voltage is included with ripple.

Mosaic Pattern(8 x 6)

Table 3. ELECTRICAL CHARACTERISTICS (Continue)

Parameter			Cumphiel		Values			
			Symbol	Min	Тур	Max	Unit	notes
LED Driver :								
Power Supply Inpu	it Voltage		VBL	21.6	24.0	26.4	Vdc	1
Power Supply Input	t Current		IBL	-	3.79	4.17	Α	1
Power Supply Input Current (In-Rush)		In-rush	-	-	4.63	A	$V_{BL} = 21.6V$ $ExtV_{BR\cdot B} = 100\%$ 4	
Power Consumption	Power Consumption		PBL	-	90.9	100.1	w	1
	0.0/0#	On	V on	2.5		3.6	Vdc	
	On/Off	Off	V off	-0.3	0.0	0.7	Vdc	
	Prightpage			5	-	100	%	On Duty
Input Voltage for	Brightness	Adjust	ExtV _{BR-B}	1	-	100	%	6
Input Voltage for Control System Signals					100		Hz	3
0	ExtV _{BR-B} Frequency		NTSC		120		Hz	3
	Pulse Duty Level		High Level	2.5	-	3.6	Vdc	HIGH : on duty
(PWM)			Low Level	0.0		0.7	Vdc	LOW : off duty
LED :								
Life Time				50,000	60,000	-	Hrs	2

notes :

 Electrical characteristics are determined after the unit has been 'ON' and stable for approximately 60 minutes at 25±2°C. The specified current and power consumption are under the typical supply Input voltage 24Vand VBR (ExtVBR-B: 100%), it is total power consumption.

- 2. The life time (MTTF) is determined as the time which luminance of the LED is 50% compared to that of initial value at the typical LED current (ExtVBR-B :100%) on condition of continuous operating in LCM state at 25±2°C.
- 3. LGD recommend that the PWM freq. is synchronized with Two time harmonic of V_sync signal of system. Though PWM frequency is over 120Hz (max 252Hz), function of LED Driver is not affected.
- 4. The duration of rush current is about 200ms. This duration is applied to LED on time.
- 5. Even though inrush current is over the specified value, there is no problem if I²T spec of fuse is satisfied.
- 6. ExtV_{BR-B} signal have to input available duty range and sequence.

After Driver ON signal is applied, $ExtV_{BR-B}$ should be sustained from 5% to 100% more than 500ms. After that, $ExtV_{BR-B}$ 1% and 100% is possible

For more information, please see 3-6-2. Sequence for LED Driver.

3-2. Interface Connections

This LCD module employs two kinds of interface connection, 51-pin connector is used for the module electronics and 14-pin connector is used for the integral backlight system.

3-2-1. LCD Module

- - LCD Connector(CN1): FI-RE51S-HF(manufactured by JAE) or compatible
- - Mating Connector : FI-R51HL(JAE) or compatible

Table 4. MODULE CONNECTOR(CN1) PIN CONFIGURATION

No	Symbol	Description	No	Symbol	Description
1	NC or GND	No Connection or Ground	27	Bit Select	H' = 10bit(D), $L' or NC = 8bit$
2	NC	Note 4	28	R2AN	SECOND LVDS Receiver Signal (A-)
3	NC	Note 4	29	R2AP	SECOND LVDS Receiver Signal (A+)
4	NC	Note 4	30	R2BN	SECOND LVDS Receiver Signal (B-)
5	NC	Note 4	31	R2BP	SECOND LVDS Receiver Signal (B+)
6	NC	Note 4	32	R2CN	SECOND LVDS Receiver Signal (C-)
7	LVDS Select	'H' =JEIDA , 'L' or NC = VESA	33	R2CP	SECOND LVDS Receiver Signal (C+)
8	NC	Note 4	34	GND	Ground
9	NC	Note 4	35	R2CLKN	SECOND LVDS Receiver Clock Signal(-)
10	NC	Note 4	36	R2CLKP	SECOND LVDS Receiver Clock Signal(+)
11	GND	Ground	37	GND	Ground
12	R1AN	FIRST LVDS Receiver Signal (A-)	38	R2DN	SECOND LVDS Receiver Signal (D-)
13	R1AP	FIRST LVDS Receiver Signal (A+)	39	R2DP	SECOND LVDS Receiver Signal (D+)
14	R1BN	FIRST LVDS Receiver Signal (B-)	40	R2EN	SECOND LVDS Receiver Signal (E-)
15	R1BP	FIRST LVDS Receiver Signal (B+)	41	R2EP	SECOND LVDS Receiver Signal (E+)
16	R1CN	FIRST LVDS Receiver Signal (C-)	42	NC or GND	No Connection or Ground
17	R1CP	FIRST LVDS Receiver Signal (C+)	43	NC or GND	No Connection or Ground
18	GND	Ground	44	GND	Ground
19	R1CLKN	FIRST LVDS Receiver Clock Signal(-)	45	GND	Ground
20	R1CLKP	FIRST LVDS Receiver Clock Signal(+)	46	GND	Ground
21	GND	Ground	47	NC	No connection
22	R1DN	FIRST LVDS Receiver Signal (D-)	48	VLCD	Power Supply +12.0V
23	R1DP	FIRST LVDS Receiver Signal (D+)	49	VLCD	Power Supply +12.0V
24	R1EN	FIRST LVDS Receiver Signal (E-)	50	VLCD	Power Supply +12.0V
25	R1EP	FIRST LVDS Receiver Signal (E+)	51	VLCD	Power Supply +12.0V
26	NC or GND	NC or Ground	-	-	-

notes

1. All GND (ground) pins should be connected together to the LCD module's metal frame.

- 2. All VLCD (power input) pins should be connected together.
- 3. All Input levels of LVDS signals are based on the EIA 644 Standard.
- 4. #1~#6 & #8~#9 NC (No Connection): These pins are used only for LGD (Do not connect)
- 5. LVDS pin (pin No. **#24,25,40,41**) are used for 10Bit(D) of the LCD module.
 - If used for 8Bit(R), these pins are no connection.
- 6. Specific pin No. **#44** is used for "No signal detection" of system signal interface. It should be GND for NSB (No Signal Black) while the system interface signal is not. If this pin is "H", LCD Module displays AGP (Auto Generation Pattern).

3-2-2. Backlight Module

Master

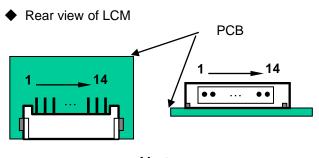
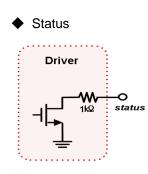

- -LED Driver Connector
 - : 20022WR H14B2(Yeonho) or Compatible
- Mating Connector
 - : 20022HS 14B2 (Yeonho) or Compatible

Table 5-1. LED DRIVER CONNECTOR PIN CONFIGURATION

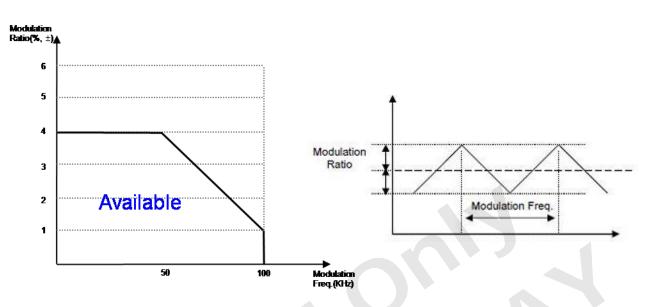

Pin No	Symbol	Description	Note
1	VBL	Power Supply +24.0V	
2	VBL	Power Supply +24.0V	
3	VBL	Power Supply +24.0V	
4	VBL	Power Supply +24.0V	
5	VBL	Power Supply +24.0V	
6	GND	Backlight Ground	
7	GND	Backlight Ground	
8	GND	Backlight Ground	1
9	GND	Backlight Ground	
10	GND	Backlight Ground	
11	Status	Back Light Status	2
12	VON/OFF	Backlight ON/OFF control	4
13	NC	Don't care	
14	EXTVBR-B	External PWM	3

Notes :1. GND should be connected to the LCD module's metal frame.

- 2. Normal : Low (under 0.7V) / Abnormal : Open
- 3. High : on duty / Low : off duty, Pin#14 can be opened. (if Pin #14 is open , EXTVBR-B is 100%)
- 4. Each impedance of pin #12 and 14 is over 50 [K\Omega] TBD. .

<Master>

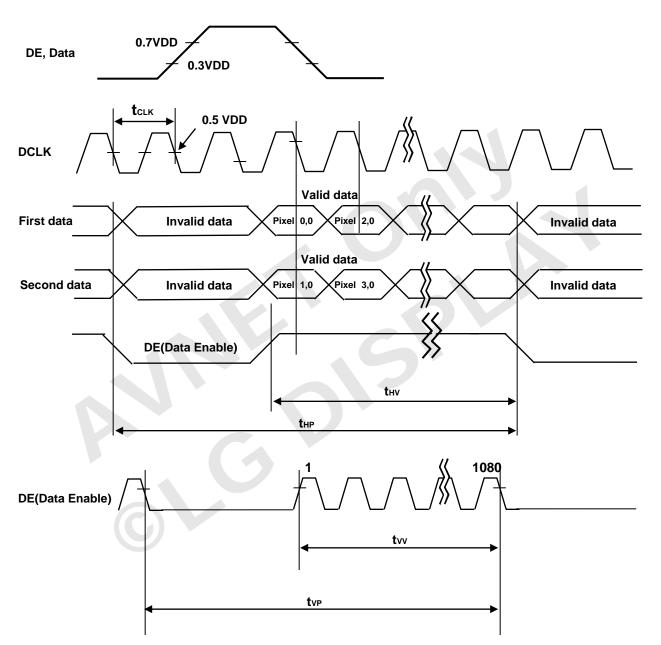
3-3. Signal Timing Specifications


Table 6 shows the signal timing required at the input of the LVDS transmitter. All of the interface signal timings should be satisfied with the following specification for normal operation.

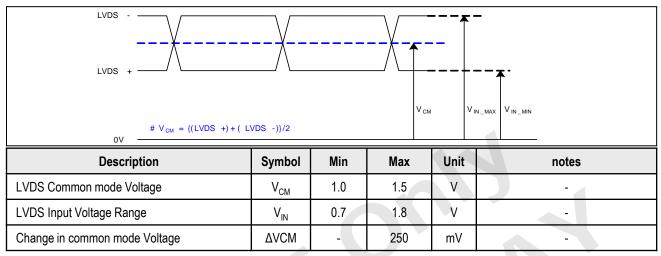
ITE	м	Symbol	Min	Тур	Мах	Unit	notes
	Display Period	tH∨	960	960	960	tCLK	1920 / 2
Horizontal	Blank	tнв	100	140	240	tCLK	1
	Total	tHP	1060	1100	1200	tCLK	
	Display Period	tvv	1080	1080	1080	Lines	
Vertical	Blank	tvв	20	45	300	Lines	1
	Total	tvp	1100	1125	1380	Lines	

Table 6. TIMING TABLE (DE Only Mode)

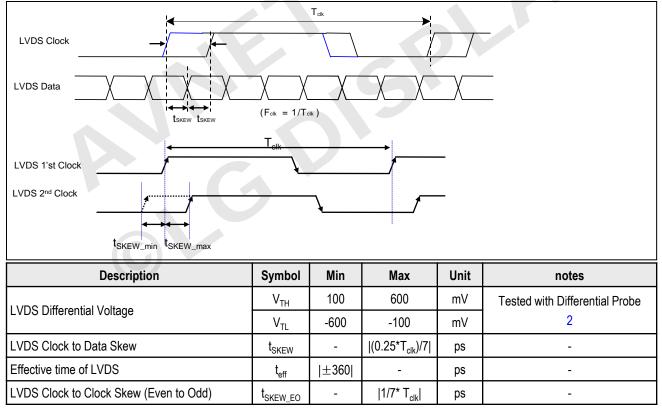
ITE	М	Symbol	Min	Тур	Max	Unit	notes
	DCLK	fclk	60.00	74.25	78.00	MHz	
Frequency	Horizontal	fH	57.3	67.5	70	KHz	2
	Vertical	fv	47	60	63	Hz	2


- Note: 1. The input of HSYNC & VSYNC signal does not have an effect on normal operation (DE Only Mode). If you use spread spectrum of EMI, add some additional clock to minimum value for clock margin.
 - 2. The performance of the electro-optical characteristics may be influenced by variance of the vertical refresh rate and the horizontal frequency
 - Spread Spectrum Rate (SSR) for 50KHz ~ 100kHz Modulation Frequency(FMOD) is calculated by (7 – 0.06*Fmod), where Modulation Frequency (FMOD) unit is KHz.
 LVDS Receiver Spread spectrum Clock is defined as below figure
 - * Timing should be set based on clock frequency.

- * Please pay attention to the followings when you set Spread Spectrum Rate(SSR) and Modulation Frequency(FMOD)
 - 1. Please set proper Spread Spectrum Rate(SSR) and Modulation Frequency (FMOD) of TV system LVDS output.
 - Please check FOS after you set Spread Spectrum Rate(SSR) and Modulation Frequency(FMOD) to avoid abnormal display. Especially, harmonic noise can appear when you use Spread Spectrum under FMOD 30 KHz.

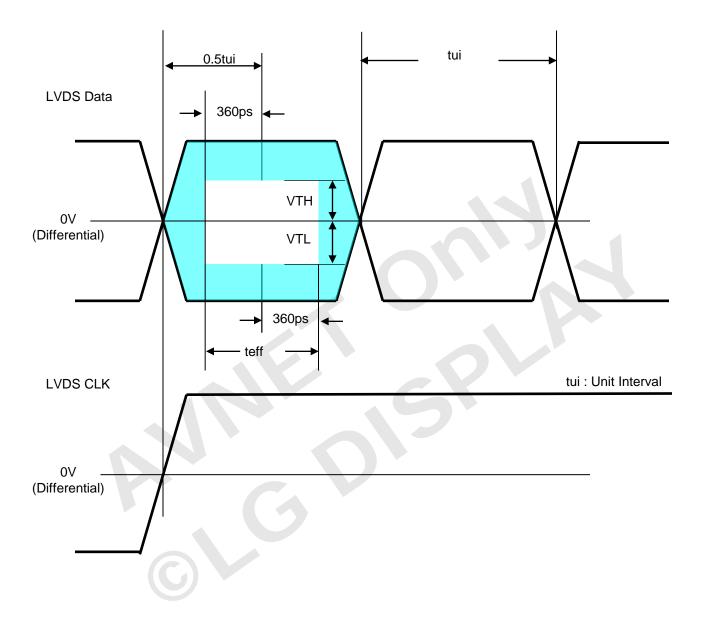

3-4. LVDS Signal Specification

3-4-1. LVDS Input Signal Timing Diagram



3-4-2. LVDS Input Signal Characteristics

1) DC Specification



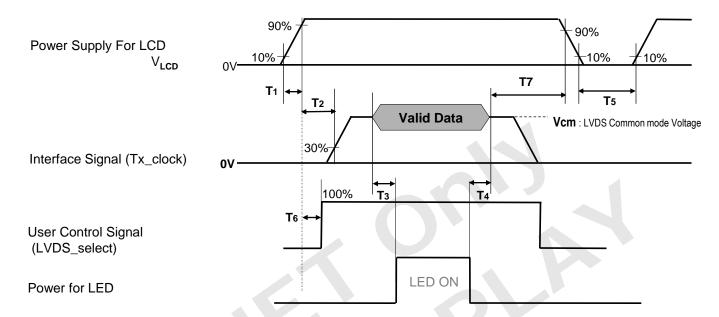
2) AC Specification

notes 1. All Input levels of LVDS signals are based on the EIA 644 Standard.

2. LVDS Differential Voltage is defined within t_{eff}

* This accumulated waveform is tested with differential probe

3-5. Color Data Reference


The brightness of each primary color (red, green, blue) is based on the 10bit gray scale data input for the color. The higher binary input, the brighter the color. Table 7 provides a reference for color versus data input.

												Input Color Data																			
	Color		_			RE	ED				~-				C	GRE	EEI	N								BL	UE				
		MS	SB								SB	MS	SB								SB	MS	SB							_L8	SB
	i	R9	R8	R7	R6	R5	R4	R3	R2	R1	R0	G9	G8	G7	G6	G5	G4	G3	G2	G1	GO	B9	B8	B7	B6	B5	B4	B3	B2	B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (1023)	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green (1023)	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
Basic	Blue (1023)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
Color	Cyan	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	RED (0000)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED (0001)	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RED						-																									
	RED (1022)	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED (1023)	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN (0000)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN (0001)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
GREEN																															
	GREEN (1022)	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0
	GREEN (1023)	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
	BLUE (0000)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	BLUE (0001)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
BLUE																															
	BLUE (1022)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	0
	BLUE (1023)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1

Table 7. COLOR DATA REFERENCE

3-6. Power Sequence

3-6-1. LCD Driving circuit

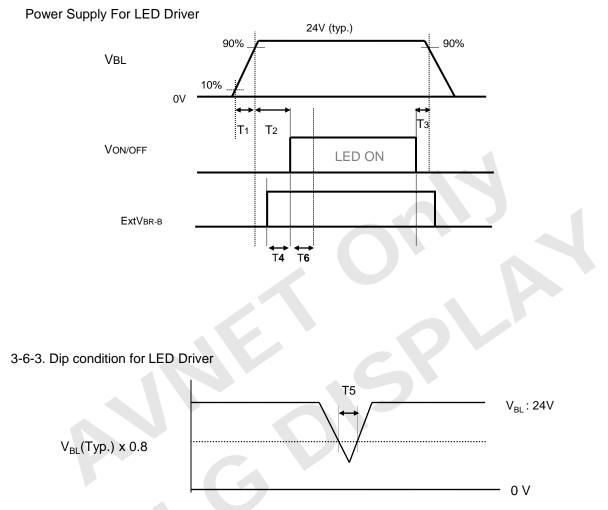


Table 8. POWER SEQUENCE

Desemptor		Value								
Parameter	Min	Тур	Мах	Unit	Notes					
T1	0.5	-	20	ms	1					
T2	0	-	-	ms	2					
Т3	400	-	-	ms	3					
T4	100	-	-	ms	3					
T5	1.0	-	-	S	4					
T6	0	-	T2	ms	5					
T7	0	-	-	ms	6					

- 1. Even though T1 is over the specified value, there is no problem if I2T spec of fuse is satisfied.
 - 2. If T2 is satisfied with specification after removing LVDS Cable, there is no problem.
 - 3. The T3 / T4 is recommended value, the case when failed to meet a minimum specification, abnormal display would be shown. There is no reliability problem.
 - 4. T5 should be measured after the Module has been fully discharged between power off and on period.
 - 5. If the on time of signals (Interface signal and user control signals) precedes the on time of Power (V_{LCD}), it will be happened abnormal display. When T6 is NC status, T6 doesn't need to be measured.
 - 6. It is recommendation specification that T7 has to be 0ms as a minimum value.
 - * Please avoid floating state of interface signal at invalid period.
 - * When the power supply for LCD (VLCD) is off, be sure to pull down the valid and invalid data to 0V.

3-6-2. Sequence for LED Driver

Table 9. Power Sequence for LED Driver

Daramatar		Values		Linita	Domorko
Parameter	Min	Тур	Max	Units	Remarks
T1	20	-	-	ms	1
T2	500	-	-	ms	
Т3	10	-	-	ms	
T4	0	-	-	ms	
T5	-	-	10	ms	V _{BL} (Тур) х 0.8
Т6	500	-	-	ms	2

Notes : 1. T1 describes rising time of 0V to 24V and this parameter does not applied at restarting time. Even though T1 is over the specified value, there is no problem if I²T spec of fuse is satisfied.

2. In T6 section, ExtVBR-B should be sustained from 5% to 100%.

4. Optical Specification

Optical characteristics are determined after the unit has been 'ON' and stable in a dark environment at $25\pm2^{\circ}$ C. The values are specified at 50cm from the LCD surface at a viewing angle of Φ and θ equal to 0°. FIG. 1 shows additional information concerning the measurement equipment and method.

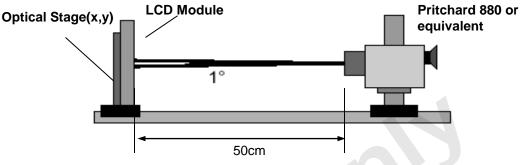


FIG. 1 Optical Characteristic Measurement Equipment and Method

Table 10. OPTICAL CHARACTERISTICS

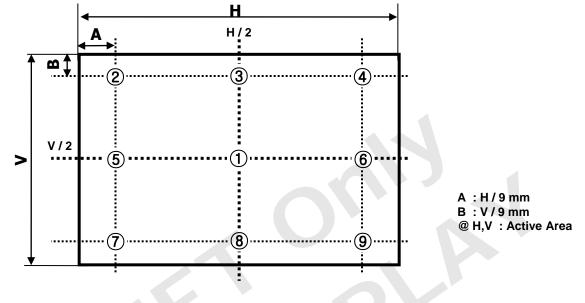
Ta= 25±2°C, V_{LCD}=12.0V, fv=60Hz, Dclk=74.25MHz, EXTV_{BR-B} =100%

								ыс-ы — 1007
Des					Value		l Init	
Par	ameter	Symbo		Min	Тур	Max	Unit	notes
Contrast Ratio		CR		900	1300	-		1
Surface Luminand	ce, white	L _{WH}	_	560	700	-	cd/m ²	2
Luminance Variat	ion	δ_{WHITE}	9P	65		-	%	3
Boononao Timo	Gray-to-Gray	G ot G		-	8	10	ms	4
Response Time	Uniformity	δ д то д		-	-	1		5
	RED	Rx			0.651			
	RED	Ry			0.334]		
		Gx			0.309			
Color Coordinates [CIE1931]	GREEN	Gy		Тур	0.601	Тур		
		Bx By		-0.03	0.151	+0.03		
	BLUE				0.058	ĺ		
		Wx			0.279]		
	WHITE	Wy	Wy		0.292]		
Color Temperature	9				10,000		К	
Color Gamut					72	1	%	
Viewing Angle (C	R>10)							
x ax	is, right(φ=0°)	θr		89	- 1	-		
x ax	x axis, left (\=180°)			89	-	-	dearer	<u> </u>
y axis, up (φ=90°)		θυ		89	-	-	degree	6
y axis, down (φ=270°)		θd		89	-	-		
Gray Scale				-	-	- 1		7

Note : 1. Contrast Ratio(CR) is defined mathematically as :

CR(Contrast Ratio) = Maximum CRn (n=1,2,3,4,5)

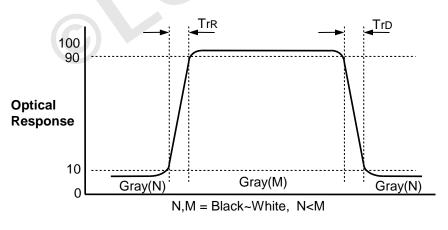
CRn = Surface Luminance at position n with all white pixels


Surface Luminance at position n with all black pixels

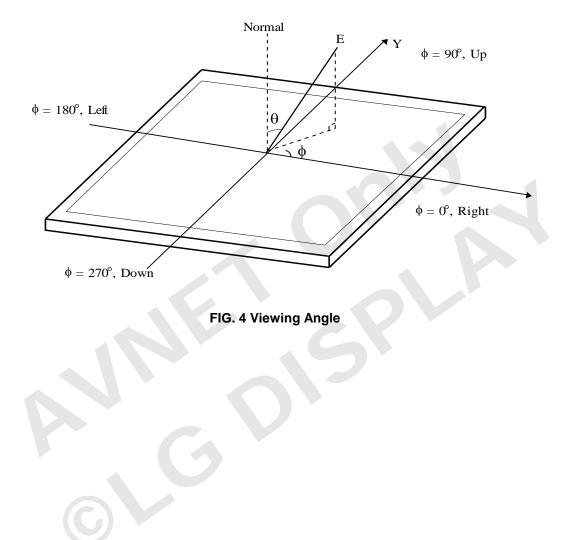
It is measured at center 1-point.

- Surface luminance are determined after the unit has been 'ON' and 1 Hour after lighting the backlight in a dark environment at 25±2°C. Surface luminance is the luminance value at center 1-point across the LCD surface 50cm from the surface with all pixels displaying white. For more information see the FIG. 2.
- 3. The variation in surface luminance , δ WHITE is defined as : δ WHITE(9P) = Minimum (L_{on1},L_{on2} ~ L_{on8}, L_{on9}) / Maximum (L_{on1},L_{on2} ~ L_{on8}, L_{on9})*100 Where L_{on1} to L_{on9} are the luminance with all pixels displaying white at 9 locations . For more information, see the FIG. 2.
- 4. Response time is the time required for the display to transit from G(N) to G(M) (Rise Time, Tr_R) and from G(M) to G(N) (Decay Time, Tr_D). For additional information see the FIG. 3.(N<M)
 ※ G to G Spec stands for average value of all measured points. Photo Detector : RD-80S / Field : 2 °
- 5. Viewing angle is the angle at which the contrast ratio is greater than 10. The angles are determined for the horizontal or x axis and the vertical or y axis with respect to the z axis which is normal to the LCD module surface. For more information, see the FIG. 4.
- Gray scale specification Gamma Value is approximately 2.2. For more information, see the Table 11.

	T IF	상대휘도	(%) OPC OFF 상대	배휘도(%)	
	계조	최 소	정 격	최 대	비고
0	LO	-	0.07	0.29	
1	L63	0.11	0.27	1.15	
2	L 127	0.32	1.04	2.26	
3	L191	0.83	2.49	4.45	
4	L255	190	4.68	7.98	
5	L319	397	7.66	11.96	
6	L383	626	11.5	16.96	
7	L447	9.41	16.1	23.11	
8	L511	13.0	21.6	30.53	
9	L575	18.5	28.1	38.81	
10	L639	24.2	35.4	47.78	
11	L703	30.7	43.7	56.99	
12	L767	38.9	53.0	67.14	
13	L831	49.2	63.2	77.38	
14	L895	60.5	74.5	87.50	
15	L959	77.3	86.7	95.34	
16	L1023	100	100	100	


Table 11. Gray scale specification

Measuring point for surface luminance & measuring point for luminance variation.


FIG. 2 9 Points for Luminance Measure

Response time is defined as the following figure and shall be measured by switching the input signal for "Gray(N)" and "Gray(M)".

Dimension of viewing angle range

5. Mechanical Characteristics

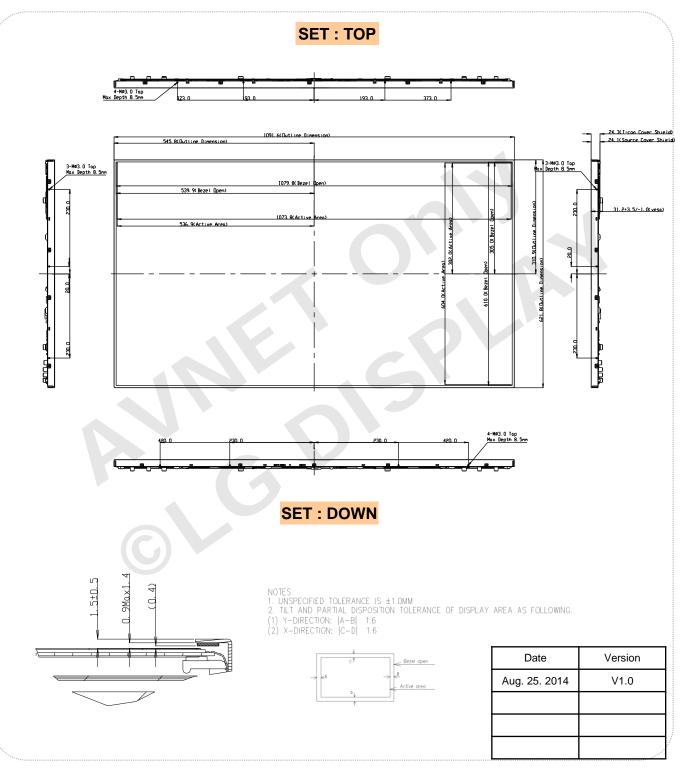
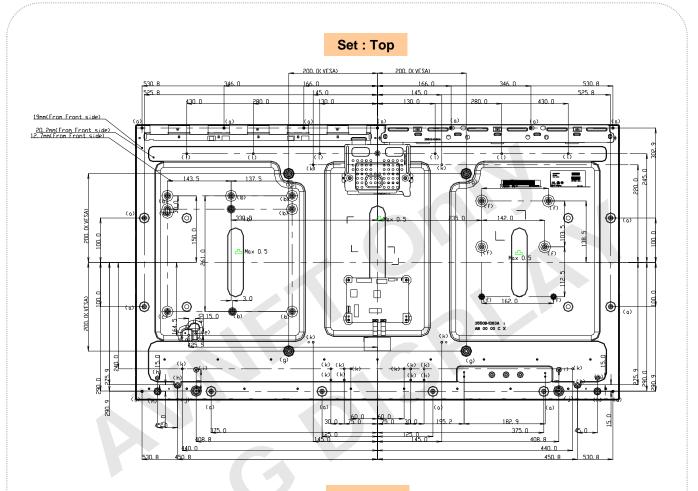

Table 12 provides general mechanical characteristics.

Table 12. MECHANICAL CHARACTERISTICS


Item	Value	
	Horizontal	1091.6 mm
Outline Dimension	Vertical	621.8mm
	Depth	12.7 mm
Derel Area	Horizontal	1079.8 mm
Bezel Area	Vertical	610 mm
Active Dieploy Area	Horizontal	1073.8 mm
Active Display Area	Vertical	604 mm
Weight	11.8 Kg (Typ.), 12kg (Max.)	

Note : Please refer to a mechanical drawing in terms of tolerance at the next page.

[FRONT VIEW]

[REAR VIEW]

Set : Down

I.	tem	Ταρ	UDM Heghit (mm)	Max Depth (mm)	Torque (kgf.cm)	Notes
(۵)	M3. O	6.1	4.0	Max 8.0	
(b)	M3. 0	5. 0	4.0	Max 8.0	
(C)	M4. O	5. 0	4.0	Max 8.0	
(d)	M4. O	5. 7	5. 0	Max 8.0	
(e)	M3. 0	8.8	8. 0	Max 8.0	
(f)	M3. 0	6. 0	5, 5	Max 8.0	
(g)	M6. O	11.0	10.0	Max 15.0	VESA
(h)	M4. O	11.0	8, 5	Max 8.0	
(;)	M4. O	9. 0	5. 5	Max 8.0	
(j)	M4. O	12. 2	5. 5	Max 8.0	
(k)	M4. O	-	4. 5	Max 8.0	
(0	M4. O	-	4. 5	Max 8.0	

6. Reliability

Table 13. ENVIRONMENT TEST CONDITION

No.	Test Item	Condition
1	High temperature storage test	Ta= 60°C 90% 240h
2	Low temperature storage test	Ta= -20°C 240h
3	High temperature operation test	Ta= 50°C 50%RH 500h
4	Low temperature operation test	Ta= 0°C 500h
5	Vibration test (non-operating)	Wave form : random Vibration level : 0.7Grms Bandwidth : 10-300Hz Duration : X,Y,Z, Each direction per 10 min
6	Shock test (non-operating)	Shock level : 15Grms Waveform : half sine wave, 14ms Direction : $\pm X$, $\pm Y$, $\pm Z$ One time each direction
7	Humidity condition Operation	Ta= 40 °C ,90%RH
8	Altitude operating storage / shipment	0 - 16,400 ft 0 - 40,000 ft

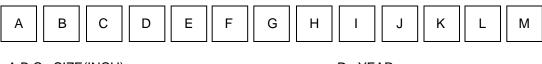
Note : 1. Before and after Reliability test, LCM should be operated with normal function.

2. These conditions are for LGD's internal test. Please refer to Absolute Maximum Ratings (Table1) for guaranteed condition.

7. International Standards

7-1. Safety

- a) UL 60950-1, Underwriters Laboratories Inc. Information Technology Equipment - Safety - Part 1 : General Requirements.
- b) CAN/CSA C22.2 No.60950-1-07, Canadian Standards Association.
 Information Technology Equipment Safety Part 1 : General Requirements.
- c) EN 60950-1, European Committee for Electrotechnical Standardization (CENELEC). Information Technology Equipment - Safety - Part 1 : General Requirements.
- d) IEC 60950-1, The International Electrotechnical Commission (IEC).
 Information Technology Equipment Safety Part 1 : General Requirements.


7-2. Environment

a) RoHS, Directive 2011/65/EU of the European Parliament and of the council of 8 June 2011

8. Packing

8-1. Information of LCM Label

a) Lot Mark

A,B,C : SIZE(INCH) E : MONTH D : YEAR F ~ M : SERIAL NO.

Note

1. YEAR

Year	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Mark	А	В	С	D	Е	F	G	Н	J	К

2. MONTH

Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Mark	1	2	3	4	5	6	7	8	9	А	В	С

b) Location of Lot Mark

Serial NO. is printed on the label. The label is attached to the backside of the LCD module. This is subject to change without prior notice.

8-2. Packing Form

- a) Package quantity in one Pallet : 18 pcs
- b) Pallet Size : 1300 mm(W) X 1140 mm(D) X 820 mm(H)

9. Precautions

Please pay attention to the followings when you use this TFT LCD module.

9-1. Mounting Precautions

- (1) You must mount a module using specified mounting holes (Details refer to the drawings).
- (2) You should consider the mounting structure so that uneven force (ex. Twisted stress, Concentrated stress) is not applied to the module. And the case on which a module is mounted should have sufficient strength so that external force is not transmitted directly to the module.
- (3) Please attach the surface transparent protective plate to the surface in order to protect the polarizer. Transparent protective plate should have sufficient strength in order to the resist external force.
- (4) You should adopt radiation structure to satisfy the temperature specification.
- (5) Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the polarizer at high temperature and the latter causes circuit break by electro-chemical reaction.
- (6) Do not touch, push or rub the exposed polarizers with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment. Do not touch the surface of polarizer for bare hand or greasy cloth.(Some cosmetics are detrimental to the polarizer.)
- (7) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzine. Normal-hexane is recommended for cleaning the adhesives used to attach front / rear polarizers. Do not use acetone, toluene and alcohol because they cause chemical damage to the polarizer
- (8) Wipe off saliva or water drops as soon as possible. Their long time contact with polarizer causes deformations and color fading.
- (9) Do not open the case because inside circuits do not have sufficient strength.
- (10) Touching the LED Driver might cause an electric shock and damage to LED Driver. Please always use antistatic tools when handling the LED Driver

9-2. Operating Precautions

- (1) Response time depends on the temperature.(In lower temperature, it becomes longer.)
- (2) Brightness depends on the temperature. (In lower temperature, it becomes lower.) And in lower temperature, response time(required time that brightness is stable after turned on) becomes longer
- (3) Be careful for condensation at sudden temperature change.Condensation makes damage to polarizer or electrical contacted parts. And after fading condensation, smear or spot will occur.
- (4) When fixed patterns are displayed for a long time, remnant image is likely to occur.
- (5) Module has high frequency circuits. Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding methods may be important to minimized the interference.
- (6) Please do not give any mechanical and/or acoustical impact to LCM. Otherwise, LCM can't be operated its full characteristics perfectly.
- (7) A screw which is fastened up the steels should be a machine screw. (if not, it can causes conductive particles and deal LCM a fatal blow)
- (8) Please do not set LCD on its edge.
- (9) The conductive material and signal cables are kept away from LED driver inductor to prevent abnormal display, sound noise and temperature rising.

9-3. Electrostatic Discharge Control

Since a module is composed of electronic circuits, it is not strong to electrostatic discharge. Make certain that treatment persons are connected to ground through wrist band etc. And don't touch interface pin directly.

9-4. Precautions for Strong Light Exposure

Strong light exposure causes degradation of polarizer and color filter.

9-5. Storage

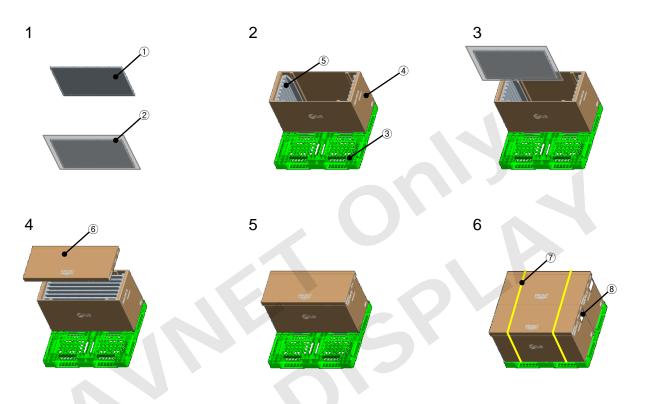
When storing modules as spares for a long time, the following precautions are necessary.

- (1) Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between 5°C and 35°C at normal humidity.
- (2) The polarizer surface should not come in contact with any other object. It is recommended that they be stored in the container in which they were shipped.
- (3) Storage condition is guaranteed under packing conditions.
- (4) The phase transition of Liquid Crystal in the condition of the low or high storage temperature will be recovered when the LCD module returns to the normal condition.

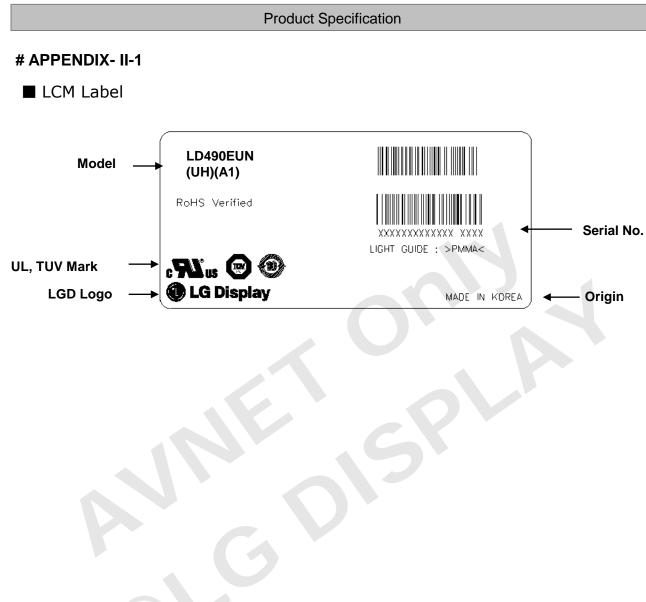
9-6. Appropriate Condition for Commercial Display

- Generally large-sized LCD modules are designed for consumer applications (TV).

Accordingly, a long-term display like in Public Display (PD) application, can cause uneven display including image sticking. To optimize module's lifetime and function, several operating usages are required.


1. Normal operating condition

- Temperature: 0 ~ 40°C
- Operating Ambient Humidity : 10 ~ 90 %
- Display pattern: dynamic pattern (Real display)
- Note) Long-term static display can cause image sticking.
- 2. Operating usages under abnormal condition
 - a. Ambient condition
 - Well-ventilated place is recommended to set up Commercial Display system.
- b. Power and screen save
 - Periodical power-off or screen save is needed after long-term display.


- 3. Operating usages to protect against image sticking due to long-term static display
- a. Suitable operating time on 'Static Image' : Under 18 hours a day
 - (* The moving picture can be allowed for 24 hours a day)
- b. Static information display recommended to use with moving image.
- Cycling display between 5 minutes' information(static) display and 10 seconds' moving image.
- c. Background and character (image) color change
 - Use different colors for background and character, respectively.
 - Change colors themselves periodically.
- d. Avoid combination of background and character with large different luminance.
- 1) Abnormal condition just means conditions except normal condition.
- 2) Black image or moving image is strongly recommended as a screen save.
- 4. Lifetime in this spec. is guaranteed only when PD is used according to operating usages.
- 5. Module should be turned clockwise based on front view when used in portrait mode.

APPENDIX-I

Pallet Ass'y

NO.	DESCRIPTION	MATERIAL
1	LCD Module	49INCH
2	AL BAG	AL
3	PALLET	PLASTIC 1300×1140×120mm
4	PACKING,BOTTOM	PAPER
(5)	PACKING,SIDE RIB	EPS
6	PACKING, TOP	PAPER
8	BAND	PP
9	LABEL	YUPO 80G 100X70

Production site

- LG Display (Paju, New Optics) CO., LTD

notes 1. The origin of LCM Label will be changed according to the production site.

APPENDIX- II-2

Pallet Label

<	100.0		~			
18 PCS	001/01-01		0.0			
MADE	MADE IN KOREA RoHS Verified					

APPENDIX- III-1

■ Required signal assignment for Flat Link (Thine : THC63LVD103) Transmitter(Pin7= "L")

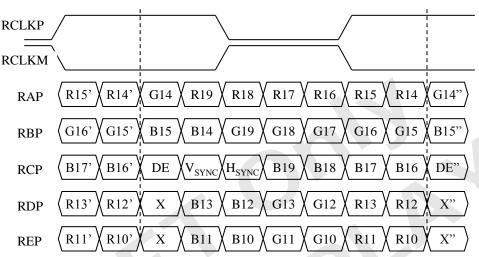
Host System	THC63LVD103						
30 Bit		or	Compatible			Timing	
RED0		33				Controller	
RED1		34		FI-RE51S-HF			
RED2		35					
RED3		36		31			
RED4		37	TA-	30	12	100Ω ≥	RO0N
RED5		38	TA+	30	13	10022	RO0P
RED6		59					
RED7		61	TB-	29	14		RO1N
RED8		4	TB+	28	15	100Ω ≶	RO1P
RED9		5	ID+		15		RUIP
GREEN0		40		25			
GREEN1		41	TC-		16	1000	RO2N
GREEN2		42	TC+	24	17	100Ω ξ	RO2P
GREEN3		44					
GREEN4		45	TCLK-	23	19		ROCLKN
GREEN5		46		22		<u>100Ω </u>	
GREEN6		62	TCLK+		20		ROCLKP
GREEN7		63		21			
GREEN8		6	TD-		22	2	RO3N
GREEN9		8	TD+	20	23	<u>100Ω </u>	RO3P
BLUE0		48					
BLUE1		49	TE-	19	24		RO4N
BLUE2		50		18		<u>100Ω </u>	
BLUE3		52	TE+	_	25		RO4P
BLUE4		53					
BLUE5		54			7		VESA/ JEIDA
BLUE6		64					
BLUE7		1				1	
BLUE8		9			1		
BLUE9		11					
Hsync		55		۰ ۵		LCM Module	
Vsync		57		GND		_	
Data Enable		58					
CLOCK		12					

Note: 1. The LCD module uses a 100 $Ohm[\Omega]$ resistor between positive and negative lines of each receiver input.

- 2. Refer to LVDS Transmitter Data Sheet for detail descriptions. (THC63LVD103 or Compatible)
- 3. '9' means MSB and '0' means LSB at R,G,B pixel data.

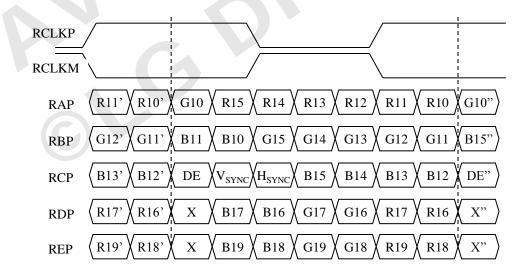
APPENDIX- III-2

■ Required signal assignment for Flat Link (Thine : THC63LVD103) Transmitter(Pin7= "H")


Host System		тно	C63LVD103				
30 Bit		or (Compatible			Timing	
RED0		4					Controller
RED1		5		FI-RE51S-HF			
RED2		59					
RED3		61		24			
RED4		33	TA-	31	12	10002	RO0N
RED5		34	TA+	30	13	100Ω ξ	RO0P
RED6		35					
RED7		36	TB-	29	14		RO1N
RED8		37		28		100Ω ⋛	
RED9		38	TB+		15		RO1P
GREEN0		6		25			
GREEN1		8	TC-	25	16	<u> </u>	RO2N
GREEN2		62	TC+	24	17	100Ω ξ	RO2P
GREEN3		63					
GREEN4		40	TCLK-	23	19		ROCLKN
GREEN5		41		22		100Ω 	
GREEN6		42	TCLK+		20	10012	ROCLKP
GREEN7		44		01			
GREEN8		45	TD-	21	22	>	RO3N
GREEN9		46	TD+	20	23	<u>100Ω </u>	RO3P
BLUE0		9					
BLUE1		11	TE-	19	24		RO4N
BLUE2		64		18		100Ω ≷	
BLUE3		1	TE+		25	10012	RO4P
BLUE4		48					
BLUE5		49			7		VESA / JEIDA
BLUE6		50					
BLUE7		52				l	
BLUE8		53			1		
BLUE9		54]
Hsync		55		<		LCM Module	
Vsync		57		VCC			
Data Enable		58					
CLOCK		12					

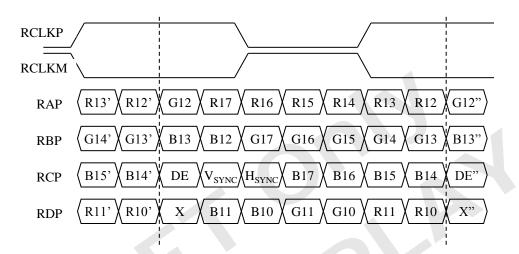
Note :1. The LCD module uses a 100 $Ohm[\Omega]$ resistor between positive and negative lines of each receiver input.

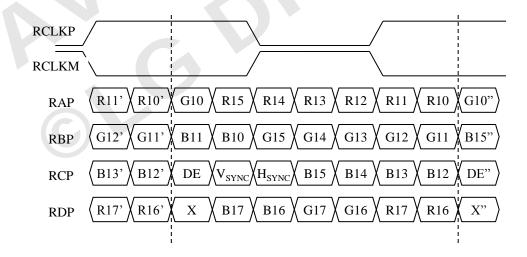
- 2. Refer to LVDS Transmitter Data Sheet for detail descriptions. (THC63LVD103 or Compatible)
- 3. '9' means MSB and '0' means LSB at R,G,B pixel data.


APPENDIX- IV

LVDS Data-Mapping Information (10 Bit)

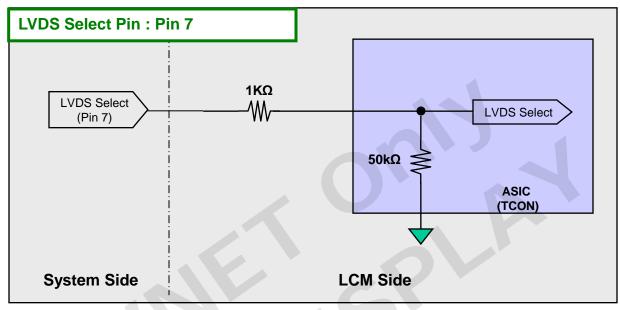
1) LVDS Select : "H" Data-Mapping (JEIDA format)


2) LVDS Select : "L" Data-Mapping (VESA format)

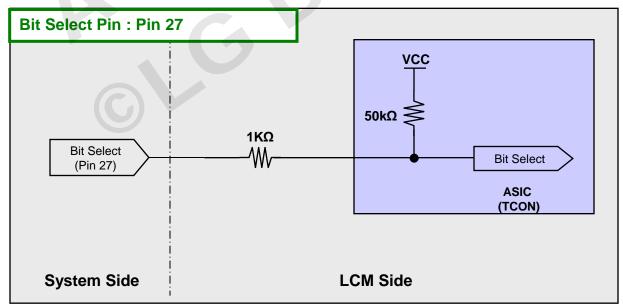

APPENDIX- IV

LVDS Data-Mapping Information (8 Bit)

1) LVDS Select : "H" Data-Mapping (JEIDA format)



2) LVDS Select : "L" Data-Mapping (VESA format)



APPENDIX- V

- Option Pin Circuit Block Diagram
 - 1) Circuit Block Diagram of LVDS Format Selection pin

2) Circuit Block Diagram of Bit Selection pin

Avnet Embedded Offices.

DACH (Germany, Austria, Switzerland)

c/o MSC Technologies GmbH Industriestrasse 16 76297 Stutensee, Germany Phone: +49 7249 910 - 0 info@msc-technologies.eu

Denmark

Avnet Embedded Avnet Nortec A/S Lyskær 9 2730 Herlev Phone: +45 3678 6250 Fax: +45 3678 6255 denmark@avnet-embedded.eu

Finland

Avnet Embedded Avnet Nortec Oy Pihatörmä 1 B 02240 Espoo Phone: +358 20 749 9 260 Fax: +358 20 749 9 280 finland@avnet-embedded.eu

France

Avnet Embedded Avnet EMG France SA Parc Club du Moulin à Vent, Bât 10 33, rue du Dr Georges Lévy 69693 Vénissieux Cedex Phone: +33 4 78 77 13 92 Fax: +33 4 78 77 13 97 bron@avnet-embedded.eu

Avnet Embedded Avnet EMG France SA 14 avenue Carnot 91349 Massy Cedex Phone: +33 1 64 47 29 29 Fax: +33 1 64 47 99 99 paris@avnet-embedded.eu Avnet Embedded Avnet EMG France SA Les Peupliers II 35 avenue des Peupliers 35510 Cesson-Sévigné Phone: + 33 2 99 77 37 02 Fax: + 33 2 99 77 37 01 rennes@avnet-embedded.eu

Israel

Avnet Israel 1st Avnet Road 4065001 Tel Mond Phone: +972 54 5206354 daniel.katz@avnet.eu

Italy

Avnet Embedded Avnet EMG Italy SRL Via Manzoni, 44 20095 Cusano Milanino Phone: +39 02 660 92 1 Fax: +39 02 660 92 498 milano@avnet-embedded.eu

South Africa

Avnet South Africa (Johannesburg) Block 3, Pinewood Office Park, 33 Riley Road, Woodmead P.O. Box 3853, Rivonia, 2128, South Africa Phone: +27 11 319 8600 Fax: +27 11 319 8650 sales@avnet.co.za

Avnet South Africa (Cape Town) Ground Floor, Forrest House, Belmont Office Park, 14 Belmont Road, Rondebosch P.O. Box 13004, Mowbray, 7705, South Africa Phone: +27 21 689 4141 Fax: +27 21 686 4709 sales@avnet.co.za

Avnet South Africa (Durban) 202 Clemsford, 2nd, Essex Gardens, Nelson Road, Westville P.O. Box 1428, Wandsbeck, 3630, South Africa Phone: +27 31 266 8104 Fax: +27 31 266 1891 sales@avnet.co.za

Sweden (Norway)

Avnet Embedded Avnet Nortec AB Löfströms Allé 5 172 66 Sundbyberg Phone: +46 8 587 46 400 Fax: +46 8 587 46 001 sweden@avnet-embedded.eu

United Kingdom (Ireland)

Avnet Embedded 5a Waltham Park White Waltham Maidenhead Berkshire, SL6 3TN Phone: +44 1628 518900 Fax: +44 1628 518901 uk@avnet-embedded.eu

www.avnet-embedded.eu

All trademarks and logos are the property of their respective owners. No guarentee as to the accuracy, completeness or reliability of any information Subject the modifications and amongmonts