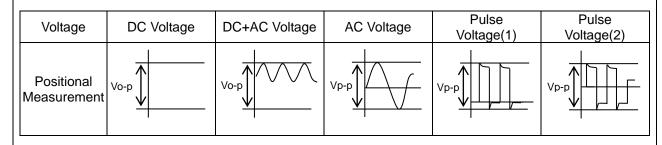
muRata

Reference Specification

Type RA Safety Standard Certified Lead Type Disc Ceramic Capacitors for General Purpose


Product specifications in this catalog are as of Jun. 2019, and are subject to change or obsolescence without notice.

Please consult the approval sheet before ordering. Please read rating and Cautions first.

1. OPERATING VOLTAGE

When DC-rated capacitors are to be used in AC or ripple current circuits, be sure to maintain the Vp-p value of the applied voltage or the Vo-p which contains DC bias within the rated voltage range. When the voltage is started to apply to the circuit or it is stopped applying, the irregular voltage may be generated for a transit period because of resonance or switching. Be sure to use a capacitor within rated voltage containing these irregular voltage.

2. OPERATING TEMPERATURE AND SELF-GENERATED HEAT

Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself.

When the capacitor is used in a high-frequency current, pulse current or the like, it may have the selfgenerated heat due to dielectric-loss. Applied voltage should be the load such as self-generated heat is within 20 °C on the condition of atmosphere temperature 25 °C. When measuring, use a thermocouple of small thermal capacity-K of ϕ 0.1mm and be in the condition where capacitor is not affected by radiant heat of other components and wind of surroundings. Excessive heat may lead to deterioration of the capacitor's characteristics and reliability.(Never attempt to perform measurement with the cooling fan running. Otherwise, accurate measurement cannot be ensured.)

3. TEST CONDITION FOR WITHSTANDING VOLTAGE

(1) TEST EQUIPMENT

Test equipment for AC withstanding voltage should be used with the performance of the wave similar to 50/60 Hz sine wave.

If the distorted sine wave or over load exceeding the specified voltage value is applied, the defective may be caused.

(2) VOLTAGE APPLIED METHOD

When the withstanding voltage is applied, capacitor's lead or terminal should be firmly connected to the out-put of the withstanding voltage test equipment, and then the voltage should be raised from near zero to the test voltage.

If the test voltage without the raise from near zero voltage would be applied directly to capacitor, test voltage should be applied with the *zero cross. At the end of the test time, the test voltage should be reduced to near zero, and then capacitor's lead or terminal should be taken off the out-put of the withstanding voltage test equipment.

If the test voltage without the raise from near zero voltage would be applied directly to capacitor, the surge voltage may arise, and therefore, the defective may be caused.

*ZERO CROSS is the point where voltage sine wave pass 0V. - See the right figure -

0V voltage sine wave

4. FAIL-SAFE

When capacitor would be broken, failure may result in a short circuit. Be sure to provide an appropriate fail-safe function like a fuse on your product if failure would follow an electric shock, fire or fume.

5. VIBRATION AND IMPACT

Do not expose a capacitor or its leads to excessive shock or vibration during use.

6. SOLDERING

When soldering this product to a PCB/PWB, do not exceed the solder heat resistance specification of the capacitor. Subjecting this product to excessive heating could melt the internal junction solder and may result in thermal shocks that can crack the ceramic element.

When soldering capacitor with a soldering iron, it should be performed in following conditions.

Temperature of iron-tip : 400 °C max.

Soldering iron wattage : 50W max.

Soldering time : 3.5s max.

7. BONDING, RESIN MOLDING AND COATING

In case of bonding, molding or coating this product, verify that these processes do not affect the quality of capacitor by testing the performance of the bonded, molded or coated product in the intended equipment.

In case of the amount of applications, dryness / hardening conditions of adhesives and molding resins containing organic solvents (ethyl acetate, methyl ethyl ketone, toluene, etc.) are unsuitable, the outer coating resin of a capacitor is damaged by the organic solvents and it may result, worst case, in a short circuit.

The variation in thickness of adhesive, molding resin or coating may cause a outer coating resin cracking and/or ceramic element cracking of a capacitor in a temperature cycling.

8. TREATMENT AFTER BONDING, RESIN MOLDING AND COATING

When the outer coating is hot (over 100 $^{\circ}$ C) after soldering, it becomes soft and fragile. So please be careful not to give it mechanical stress.

Failure to follow the above cautions may result, worst case, in a short circuit and cause fuming or partial dispersion when the product is used.

9. OPERATING AND STORAGE ENVIRONMENT

The insulating coating of capacitors does not form a perfect seal; therefore, do not use or store capacitors in a corrosive atmosphere, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. And avoid exposure to moisture. Before cleaning, bonding, or molding this product, verify that these processes do not affect product quality by testing the performance of a cleaned, bonded or molded product in the intended equipment. Store the capacitors where the temperature and relative humidity do not exceed -10 to 40 °C and 15 to 85%.

Use capacitors within 6 months after delivered. Check the solderability after 6 months or more.

10. LIMITATION OF APPLICATIONS

Please contact us before using our products for the applications listed below which require especially high reliability for the prevention of defects which might directly cause damage to the third party's life, body or property.

- 1. Aircraft equipment
- 2. Aerospace equipment
- 3. Undersea equipment
- 4. Power plant control equipment
- 5. Medical equipment
- 6. Transportation equipment (vehicles, trains, ships, etc.)
- 7. Traffic signal equipment
- 8. Disaster prevention / crime prevention equipment
- 9. Data-processing equipment exerting influence on public
- 10. Application of similar complexity and/or reliability requirements to the applications listed in the above.

NOTICE

1. CLEANING (ULTRASONIC CLEANING)

To perform ultrasonic cleaning, observe the following conditions.

Rinse bath capacity : Output of 20 watts per liter or less.

Rinsing time : 5 min maximum.

Do not vibrate the PCB/PWB directly.

Excessive ultrasonic cleaning may lead to fatigue destruction of the lead wires.

2. CAPACITANCE CHANGE OF CAPACITORS

Class 1 capacitors

Capacitance might change a little depending on a surrounding temperature or an applied voltage. Please contact us if you use for the strict time constant circuit.

· Class 2 and 3 capacitors

Class 2 and 3 capacitors like temperature characteristic B, E and F have an aging characteristic, whereby the capacitor continually decreases its capacitance slightly if the capacitor leaves for a long time. Moreover, capacitance might change greatly depending on a surrounding temperature or an applied voltage. So, it is not likely to be able to use for the time constant circuit. Please contact us if you need a detail information.

3. PERFORMANCE CHECK BY EQUIPMENT

Before using a capacitor, check that there is no problem in the equipment's performance and the specifications.

Generally speaking, CLASS 2 ceramic capacitors have voltage dependence characteristics and temperature dependence characteristics in capacitance. So, the capacitance value may change depending on the operating condition in a equipment. Therefore, be sure to confirm the apparatus performance of receiving influence in a capacitance value change of a capacitor, such as leakage current and noise suppression characteristic.

Moreover, check the surge-proof ability of a capacitor in the equipment, if needed, because the surge voltage may exceed specific value by the inductance of the circuit.

1.Please make sure that your product has been evaluated in view of your specifications with our product being mounted to your product.

2. You are requested not to use our product deviating from this specification.

1. Application

This specification is applied to Safety Standard Certified Lead Type Disc Ceramic Capacitors Type RA used for General Electric equipment.

Type RA is Safety Standard Certified capacitors of Class X1,Y1.

Do not use these products in any automotive power train or safety equipment including battery chargers for electric vehicles and plug-in hybrids.

Approval standard and certified number

	Standard number	*Certified number	AC Rated volt. V(r.m.s.)
UL/cUL	UL60384-14	E37921	
ENEC (VDE)	EN60384-14	40043033	X1:440
CQC	IEC60384-14	CQC16001138225	Y1:250
КТС	KC60384-14	HU03008-17008	

Above Certified number may be changed on account of the revision of standards and the renewal of certification.

2. Rating

2-1. Operating temperature range	-40 ~ +125°C

2-2. Rated Voltage

X1:AC440V(r.m.s.) Y1:AC250V(r.m.s.)

2-3. Part number configuration

ex.) <u>DE1</u> Product code	B3 Temperature characteristic	<u>RA</u> Type name	<u>471</u> Capacitance	K Capacitance tolerance	0	<u>N01F</u> Individual specification
• Produ	ict code					

DE1 denotes X1,Y1 class .

• Temperature characteristic

Code	Temperature characteristic
1X	SL
B3	В
E3	E

Please confirm detailed specification on [Specification and test methods].

• Type name

This denotes safety certified type name Type RA.

Capacitance

The first two digits denote significant figures ; the last digit denotes the multiplier of 10 in pF. ex.) In case of 471.

$$47 \times 10^{1} = 470 \text{pF}$$

• Capacitance tolerance Please refer to [Part number list].

Lead code

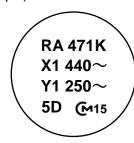
Code	Lead style
A*	Vertical crimp long type
J*	Vertical crimp short type
N*	Vertical crimp taping type
Diagon refer to	Dert number list]

* Please refer to [Part number list]

Packing style code

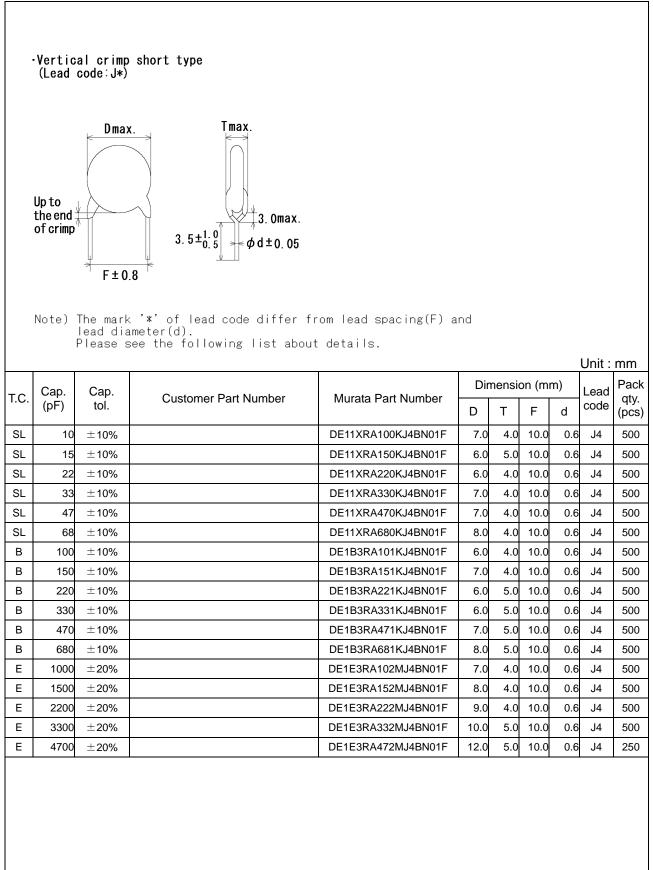
 g etyle eede		
Code	Packing type	
В	Bulk type	
А	Ammo pack taping type	

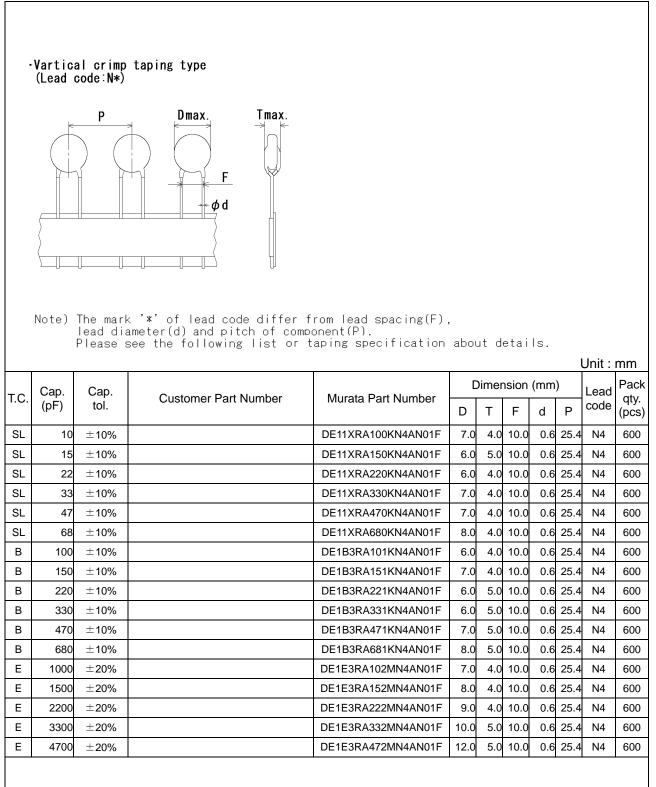
Individual specification


In case part number cannot be identified without 'individual specification', it is added at the end of part number.

sha or part namber.	
Code	Specification
	 Rated voltage : X1:AC440V(r.m.s.)
	Y1:AC250V(r.m.s.)
N01F	 Halogen free
NUTE	(Br ≤ 900ppm, Cl ≤ 900ppm Br + Cl ≤ 1500ppm
	_ Br + Cl ≤ 1500ppm
	CP wire

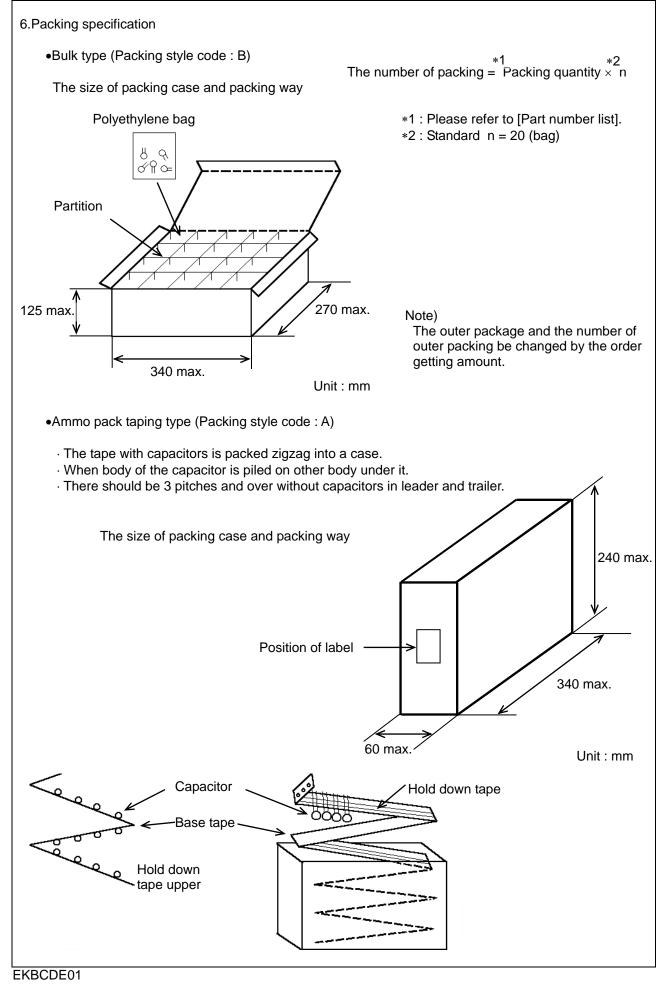
Note) Murata part numbers might be changed depending on lead code or any other changes. Therefore, please specify only the type name(RA) and capacitance of products in the parts list when it is required for applying safety standard of electric equipment.

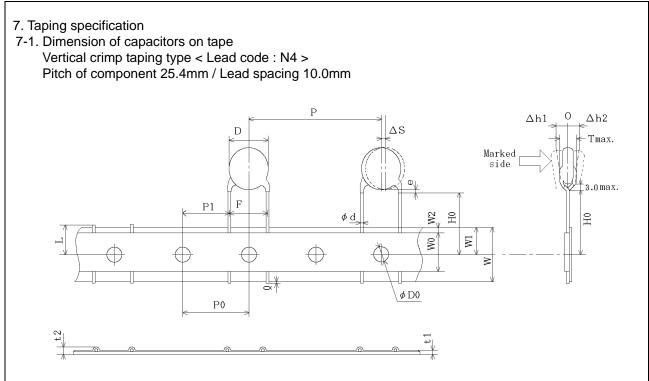

3. Marking


Type name	: RA
Nominal capacitance	: Actual value(under 100pF)
	3 digit system(100pF and over)
Capacitance tolerance	: Code
Class code and Rated voltage mark	: X1 440~
	Y1 250~
Manufacturing year	: Letter code(The last digit of A.D. year.)
Manufacturing month	: Code
	Feb./Mar. $\rightarrow 2$ Aug./Sep. $\rightarrow 8$ Apr./May $\rightarrow 4$ Oct./Nov. $\rightarrow 0$ Jun./Jul. $\rightarrow 6$ Dec./Jan. $\rightarrow D$
	Apr./May \rightarrow 4 Oct./Nov. \rightarrow O
	$Jun./Jul. \rightarrow 6$ Dec./Jan. $\rightarrow D$
Company name code	: Cm15 (Made in Thailand)
	(Example)

ſ

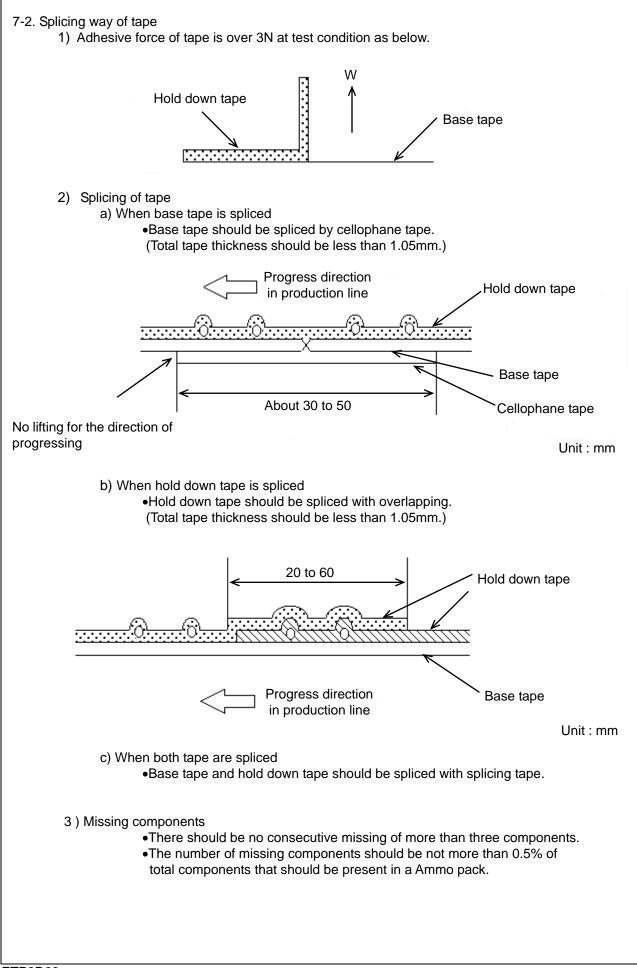
4.	Part nu	mber list								
	Vertica (Lead o	al crimp code∶A*)	long type							
-		0 The mark lead dia	x. Tmax. 3.0max. 25.0min. ϕd ±0.05 x. '*' of lead code differ from the following list about		nd				<u>Unit :</u>	mm
T.C.	Cap. (pF)	Cap. tol.	Customer Part Number	Murata Part Number	Dir	nensio	,	n)	Lead code	Pack qty.
	(pr)	101.			D	Т	F	d	coue	(pcs)
SL	10	±10%		DE11XRA100KA4BN01F	7.0	4.0	10.0	0.6	A4	250
SL	15	±10%		DE11XRA150KA4BN01F	6.0	5.0	10.0	0.6	A4	500
SL	22	±10%		DE11XRA220KA4BN01F	6.0	4.0	10.0	0.6	A4	500
SL	33	±10%		DE11XRA330KA4BN01F	7.0	4.0	10.0	0.6	A4	250
SL	47	±10%		DE11XRA470KA4BN01F	7.0	4.0	10.0	0.6	A4	250
SL	68	$\pm 10\%$		DE11XRA680KA4BN01F	8.0	4.0	10.0	0.6	A4	250
В	100	$\pm 10\%$		DE1B3RA101KA4BN01F	6.0	4.0	10.0	0.6	A4	500
В	150	\pm 10%		DE1B3RA151KA4BN01F	7.0	4.0	10.0	0.6	A4	250
В	220	\pm 10%		DE1B3RA221KA4BN01F	6.0	5.0	10.0	0.6	A4	500
В	330	\pm 10%		DE1B3RA331KA4BN01F	6.0	5.0	10.0	0.6	A4	500
В	470	\pm 10%		DE1B3RA471KA4BN01F	7.0	5.0	10.0	0.6	A4	250
В	680	±10%		DE1B3RA681KA4BN01F	8.0	5.0	10.0	0.6	A4	250
Е	1000	±20%		DE1E3RA102MA4BN01F	7.0	4.0	10.0	0.6	A4	250
Е	1500	±20%		DE1E3RA152MA4BN01F	8.0	4.0	10.0	0.6	A4	250
Е	2200	±20%		DE1E3RA222MA4BN01F	9.0	4.0	10.0	0.6	A4	250
Е	3300	±20%		DE1E3RA332MA4BN01F	10.0	5.0	10.0	0.6	A4	250
Е	4700	±20%		DE1E3RA472MA4BN01F	12.0	5.0	10.0	0.6	A4	200




	nacitication and	that mathada				
NO	pecification and			cification		Test method
No. 1	Appearance and c			fect on appearance	The capacitor of	should be inspected by naked eyes
1	Appearance and c		form and dime		for visible evide	
				[Part number list].		ould be measured with slide calipers.
2	Marking		To be easily le			should be inspected by naked eyes.
3	Dielectric	Between lead	No failure.	9.210.		should not be damaged when
5	strength	wires	No failure.			s.)<50/60Hz> is applied between the
		Body	No failure.			nals of the capacitor should be
		insulation			connected toge	
					Then, a metal f	
					closely wrappe	
					the body of the	
					to the distance	
					about 3 to 6mn from each term	
						ninal. <u>5000 60 600</u> 000 balls acitor should be inserted into a
						with metal balls of about 1mm
					diameter.	
						0V (r.m.s.)<50/60Hz> is applied for
	1					he capacitor lead wires and metal
					balls.	·
4	Insulation Resista	ince (I.R.)	10000MΩ min			resistance should be measured with
						ithin 60 ± 5 s of charging.
	1					ould be applied to the capacitor
				1.4.1	through a resis	
5	Capacitance		Within specifie	d tolerance.		ce should be measured at 20°C with
~	Dissingtion Front		0.50/			AC1±0.2V(r.m.s.) max
6	Dissipation Factor	r (D.F.)	2.5% max.			factor should be measured
						±0.1kHz and AC1±0.2V(r.m.s.) max
7	Temperature chara	acteristic	Char SI +35	0 to -1000 ppm/°C	The capacitan	ce measurement should be made at
'	Temperature onan	adionatio		+20 to +85°C)	each step spec	
			Char. B : With			
			Char. E : With			
			(Temp. range :			
				,	-	· · · · · · · · · · · · · · · · · · ·
				Step	1 2	3 4 5
				Temp.(°C) 2	20±2 -25±2	20±2 85±2 20±2
8	Active flammability	V	The choose of	oth should not be	The consoitors	should be individually wrapped in at
0		y	on fire.			nore than two complete layers of
			on mo.			The capacitor should be subjected
						es. The interval between successive
					discharges sho	ould be 5 s. The UAc should be
	1				I maintained for	2min after the last discharge.
					inalitation for	
					S1	<u>F_L1_L2R</u>
						$\begin{array}{c} F & L1 & L2 \\ c_1 + & c_2 + & c_3 + & c_4 + & c_6 + & c$
						$ \begin{array}{c} F \\ \hline \\$
						$\begin{array}{c} F \\ L1 \\ c1 \\ c2 \\ c2 \\ c2 \\ c1 \\ c2 \\ c1 \\ c2 \\ c1 \\ c2 \\ c1 \\ c1$
						$\begin{array}{c} F \\ L1 \\ c1 \\ c2 \\ c2 \\ c2 \\ c1 \\ c2 \\ c1 \\ c2 \\ c1 \\ c2 \\ c1 \\ c1$
						F = L1 = L2 = R = Ct = T = Ut $C1 = C2 = C3 = CX = Ct = T = Ut$ $C1 = L3 = L4 = Ut$ $Osciloscope$
					S1 	$\frac{F}{L1} + \frac{L2}{L2} + \frac{R}{Ct} + \frac{L2}{Ct} + \frac{R}{Ct} + \frac{L2}{Ct} + \frac{R}{Ct} + \frac{L2}{Ct} + \frac{L2}{Ct$
					S1 	$\frac{F}{L1} + \frac{L2}{L2} + \frac{R}{Ct} + \frac{R}{Ct} + \frac{L1}{L2} + \frac{L2}{L4} + \frac{R}{Ct} + \frac{L1}{Ct} + \frac{L2}{Ct} + \frac{L2}{Ct$
					C1,2 : 1μF± L1 to L4 : 1.5m R : 100Ω	$\frac{F}{10\%}, C3: 0.033\mu F\pm5\% 10kV$ 10%, C3: 0.033\mu F\pm5\% 10kV 10H±20% 16A Rod core choke 2±2%, Ct: 3\mu F±5% 10kV
					C1,2 : 1µF± L1 to L4 : 1.5m R : 100Ω UAc : UR ±	F = L1 = L2 = R = Ct
					C1,2 : 1µF± L1 to L4 : 1.5m R : 1000 UAc : UR ± Cx : Capa	F = L1 = L2 = R = Ct
					C1,2 : 1µF± L1 to L4 : 1.5m R : 1000 UAc : UR± Cx : Capa F : Fuse	F = L1 = L2 $C1 = C2 = C3 = CX$ $C1 = C2 = C3 = CX$ $C1 = C2 = C3 = CX$ $C1 = C1 = C1$ $C1 = C2 = C3 = CX$ $C1 = C1 = C1$ $C1 = C2 = C3$ $C1 = C2 = C3$ $C1 = C2 = C3$ $C1 = C2$ $C2 = C2$ $C1 = C2$ $C1 = C2$ $C1 = C2$ $C2 = C2$ $C1 = C2$ $C1 = C2$ $C2 = C2$ $C1 = C2$ $C2 = C2$ $C1 = C2$ $C2 =$
					C1,2 : 1µF± L1 to L4 : 1.5m R : 1000 UAc : UR ± Cx : Capa F : Fuse Ut : Volta	F L1 L2 c1 c2 c3 cx ct ct ut $\frac{13}{2}$ L4 $\frac{14}{2}$ osciloscope c10%, C3 : 0.033 μ F±5% 10kV hH±20% 16A Rod core choke $\frac{12}{2}$ %, Ct : 3μ F±5% 10kV $\frac{15}{2}$ % UR : Rated voltage incitor under test , Rated 10A ge applied to Ct
					C1,2 : 1µF± L1 to L4 : 1.5m R : 1000 UAc : UR± Cx : Capa F : Fuse	F L1 L2 c1 c2 c3 cx ct ct ut C1 = C2 c3 cx ct ct ct C1 = C2 c3 cx ct ct ct ct C1 = C2 c3 cx ct ct ct ct C1 = C2 ct
					C1,2 : 1µF± L1 to L4 : 1.5m R : 1000 UAc : UR ± Cx : Capa F : Fuse Ut : Volta	F L1 L2 c1 c2 c3 cx ct ct ut C1 = C2 c3 cx ct ct ct C1 = C2 c3 cx ct ct ct ct C1 = C2 c3 cx ct ct ct ct C1 = C2 ct
					C1,2 : 1µF± L1 to L4 : 1.5m R : 1000 UAc : UR ± Cx : Capa F : Fuse Ut : Volta	F = L1 = L2 = R = Ct = Lt = L2 $Ct = C2 = C3 = CX = Ct = Ct = Lt = Ut$ $Ct = L3 = L4 = Ct = C$
					C1,2 : 1µF± L1 to L4 : 1.5m R : 1000 UAc : UR ± Cx : Capa F : Fuse Ut : Volta	$F = L1 + L2 + R + Ut$ $C_1 + C_2 + C_3 + C_4 + Ut$ $C_1 + L3 + L4 + Ut$ $C_2 + C_3 + C_4 + C_4 + Ut$ $C_3 + C_4 $
					C1,2 : 1µF± L1 to L4 : 1.5m R : 1000 UAc : UR ± Cx : Capa F : Fuse Ut : Volta	F = L1 = L2 = R = Ct = Lt = L2 $Ct = C2 = C3 = CX = Ct = Ct = Lt = Ut$ $Ct = L3 = L4 = Ct = C$
					C1,2 : 1µF± L1 to L4 : 1.5m R : 1000 UAc : UR ± Cx : Capa F : Fuse Ut : Volta	F L1 L2 c1 c2 c3 cx ct ut x^{c} L3 L4 x^{c} L3 L4 x^{c} L3 L4 x^{c} L3 L4 y^{c} L3 CX x^{c} C1 C1 C1 x^{c} L3 CX x^{c} C1 C1 C1 x^{c} C1 C1 C1 C1 x^{c} C1 C1 C1 C1 C1 x^{c} C1
					C1,2 : 1µF± L1 to L4 : 1.5m R : 1000 UAc : UR ± Cx : Capa F : Fuse Ut : Volta	F = L1 = L2 = R = Ct = Lt
					C1,2 : 1µF± L1 to L4 : 1.5m R : 1000 UAc : UR ± Cx : Capa F : Fuse Ut : Volta	F L1 L2 c1 c2 c3 cx ct ct ut C1 = C2 ct
					C1,2 : 1µF± L1 to L4 : 1.5m R : 1000 UAc : UR ± Cx : Capa F : Fuse Ut : Volta	F = L1 + L2 + R + Ct + Ut $Ct + C2 + C3 + Ct + Ct + Ut$ $Ct + C2 + C3 + Ct + Ct + Ut$ $Ct + C2 + C2 + Ct + Ct + Ct + Ct + Ct$ $Ct + C2 + Ct + Ct + Ct + Ct + Ct + Ct +$
					C1,2 : 1µF± L1 to L4 : 1.5m R : 1000 UAc : UR ± Cx : Capa F : Fuse Ut : Volta	F = L1 + L2 + R + Ct = L3 + Ut $Ct = C2 + C3 + Ct = Ct + Ut$ $Ct = C2 + C3 + Ct = Ct + Ut$ $Ct = C2 + Ct +$
					C1,2 : 1µF± L1 to L4 : 1.5m R : 1000 UAc : UR ± Cx : Capa F : Fuse Ut : Volta	F = L1 + L2 + R + Ct + Ut $Ct + C2 + C3 + Ct + Ct + Ut$ $Ct + C2 + C3 + Ct + Ct + Ut$ $Ct + C2 + C2 + Ct + Ct + Ct + Ct + Ct$ $Ct + C2 + Ct + Ct + Ct + Ct + Ct + Ct +$
					C1,2 : 1µF± L1 to L4 : 1.5m R : 1000 UAc : UR ± Cx : Capa F : Fuse Ut : Volta	F = L1 = L2 $C1 = C2 = C3 = CX$ $C1 = C2 = C3$ $C2 = C3 = CX$ $C1 = C2 = C3$ $C2 = C3 = CX$ $C1 = C2 = C3$ $C2 = C3 = CX$ $C1 = C2 = C3$ $C2 = C3$ $C1 = C2$ $C2 = C3$ $C1 = C2$ $C2 = C3$ $C2 = C3$ $C2 = C3$ $C3 = C2$ $C3 = C3$ $C3 =$

	-		Reference only	
No.	Item	-	Specification	Test method
9	Robustness of terminations	Tensile	Lead wire should not cut off. Capacitor should not be broken.	Fix the body of capacitor, a tensile weight gradually to each lead wire in the radial direction of
		Bending		capacitor up to 10N and keep it for 10±1 s. With the termination in its normal position, the
		5		capacitor is held by its body in such a manner that
				the axis of the termination is vertical; a mass applying a force of 5N is then suspended from the
				end of the termination.
				The body of the capacitor is then inclined, within a period of 2 to 3 s, through an angle of
				approximately 90° in the vertical plane and then
				returned to its initial position over the same period of time; this operation constitutes one bend.
				One bend immediately followed by a second bend
10	Vibration	Appearance	No marked defect.	in the opposite direction. The capacitor should be firmly soldered to the
10	resistance	Capacitance	Within the specified tolerance.	supporting lead wire and vibration which is 10 to
		D.F.	2.5% max.	55Hz in the vibration frequency range,1.5mm in total amplitude, and about 1min in the rate of
				vibration change from 10Hz to 55Hz and back to
				10Hz is applied for a total of 6 h; 2 h each in
11	Solderability of lead	ls	Lead wire should be soldered	3 mutually perpendicular directions. The lead wire of a capacitor should be dipped into a
			With uniformly coated on the	ethanol solution of 25wt% rosin and then into
			axial direction over 3/4 of the circumferential direction.	molten solder for 2±0.5 s. In both cases the depth of dipping is up to about 1.5 to 2.0mm from the root of
				lead wires.
				Temp. of solder : 245±5°C Lead Free Solder (Sn-3Ag-0.5Cu)
12	Soldering effect	Appearance	No marked defect.	Solder temperature: 350±10°C or 260±5°C
	(Non-preheat)	Capacitance	Within ±10%	Immersion time : 3.5±0.5 s
		change I.R.	1 000MΩ min.	[(In case of 260±5°C : 10±1 s) The depth of immersion is up to about
		Dielectric	Per item 3	1.5 to 2.0mm from the root of lead wires.
		strength		Thermal Capacitor
				insulating 1.5
				□ <u>· ===</u> <u>· · · · · · · · · · · · · · · · · · ·</u>
				Pre-treatment : Capacitor should be stored at
				125±2°C for 1 h, and apply the
				AC4000V(r.m.s.) 60s then placed a *1room condition for 24±2 h
				before initial measurements.
				(Do not apply to Char. SL) Post-treatment : Capacitor should be stored for 1 to
				2 h at *1 room condition.
13	Soldering effect	Appearance	No marked defect.	First the capacitor should be stored at 120+0/-5°C
	(On-preheat)	Capacitance change	Within ±10%	for 60+0/-5 s. Then, as in figure, the lead wires should be
		I.R.	1 000MΩ min.	immersed solder of $260+0/-5^{\circ}$ C up to 1.5 to 2.0mm
		Dielectric strength	Per item 3	from the root of terminal for $7.5+0/-1$ s.
				Thermal Capacitor insulating
				1.5 to 2.0mm
				↑ ↑ ^{© 200000}
				solder
				Pre-treatment : Capacitor should be stored at
				125±2°C for 1 h, and apply the AC4000V(r.m.s.) 60s then placed a
				*1room condition for 24±2 h
				before initial measurements. (Do not apply to Char. SL)
				Post-treatment : Capacitor should be stored for 1 to
*1 "rov		rature: 15 to 35%	 C, Relative humidity: 45 to 75%, Atm	2 h at * ¹ room condition.
100	om condition remper	iaiuie. 10 10 00 1	2, Relative numinity. 43 to 75%, All	103phono pressure. 00 10 100KFa
	A02E			

No.			Reference only	
	Item		Specification	Test method
14	Flame test		The capacitor flame discontinue	The capacitor should be subjected to applied flame
			as follows.	for 15 s. and then removed for 15 s until 5 cycle.
				A
			Cycle Time	Capacitor 10 Flame
			1 to 4 30 s max.	
			5 60 s max.	is 1 st t
				Gas Burner
15	Passive flammabilit	V	The burning time should not be	The capacitor under test should be held in the flame
		3	exceeded the time 30 s.	in the position which best promotes burning.
			The tissue paper should not	Time of exposure to flame is for 30 s.
			ignite.	
			3	Length of flame : 12±1mm
				Gas burner : Length 35mm min.
				Inside Dia. 0.5±0.1mm
				Outside Dia. 0.9mm max.
				Gas : Butane gas Purity 95% min.
				√/ Capacitor
				About 8mm
				+
				Gas burner -> Flame 200±5mm
l				45°
				Tissue C
				About 10mm thick board
16	Humidity	Appearance	No marked defect.	Set the capacitor for 500±12 h at 40±2°C in 90 to
	(Under steady	Capacitance	Char. SL : Within ±5%	95% relative humidity.
	state)	change	Char. B : Within ±10%	
1			Char. E : Within ±15%	Pre-treatment : Capacitor should be stored at
1		D.F.	Char. SL : 2.5% max.	125±2°C for 1 h, and apply the
1			Char. B, E : 5.0% max.	AC4000V(r.m.s.) 60s then placed at
1		I.R.	3000MΩ min.	*1room condition for 24±2 h
1		Dielectric	Per item 3	before initial measurements.
1		strength	Fer item 5	(Do not apply to Char. SL)
1		Suengui		Post-treatment : Capacitor should be stored for 1 to
47		App2010111	No marked defect	2 h at ^{1} room condition.
17	Humidity loading	Appearance	No marked defect.	Apply AC440V(r.m.s.) for 500±12 h at 40±2°C in
1		Capacitance	Char. SL : Within ±5%	90 to 95% relative humidity.
		change	Char. B : Within ±10%	Pre-treatment : Capacitor should be stored at
			Char. E : Within ±15%	125±2°C for 1 h, and apply the
		D.F.	Char. SL : 2.5% max. Char. B, E : 5.0% max.	AC4000V(r.m.s.) 60s then placed at
1			· · · ·	* ¹ room condition for 24+2 h
		I.R.	3000MΩ min.	before initial measurements.
		Dialset	Per item 3	
		Dielectric		(Do not apply to Char, SL)
		Dielectric strength		(Do not apply to Char. SL) Post-treatment : Capacitor should be stored for 1 to
				Post-treatment : Capacitor should be stored for 1 to
* ¹ "ro	om condition" Tempe	strength		Post-treatment : Capacitor should be stored for 1 to 2 h at *1room condition.
* ¹ "roo	om condition" Tempe	strength	C, Relative humidity: 45 to 75%, Atm	Post-treatment : Capacitor should be stored for 1 to 2 h at *1room condition.
* ¹ "roo	om condition" Tempe	strength		Post-treatment : Capacitor should be stored for 1 to 2 h at *1room condition.
* ¹ "roo	om condition" Tempe	strength		Post-treatment : Capacitor should be stored for 1 to 2 h at *1room condition.
* ¹ "roo	om condition" Tempe	strength		Post-treatment : Capacitor should be stored for 1 to 2 h at *1room condition.
* ¹ "roo	om condition" Tempe	strength		Post-treatment : Capacitor should be stored for 1 to 2 h at *1room condition.
* ¹ "roo	om condition" Tempe	strength		Post-treatment : Capacitor should be stored for 1 to 2 h at *1room condition.
* ¹ "roo	om condition" Tempe	strength		Post-treatment : Capacitor should be stored for 1 to 2 h at *1room condition.
*1 "roo	om condition" Tempe	strength		Post-treatment : Capacitor should be stored for 1 to 2 h at *1room condition.
* ¹ "roo	om condition" Tempe	strength		Post-treatment : Capacitor should be stored for 1 to 2 h at *1room condition.
* ¹ "roo	om condition" Tempe	strength		Post-treatment : Capacitor should be stored for 1 to 2 h at *1room condition.
* ¹ "roo	om condition" Tempe	strength		Post-treatment : Capacitor should be stored for 1 to 2 h at *1room condition.
* ¹ "roo	om condition" Tempe	strength		Post-treatment : Capacitor should be stored for 1 to 2 h at *1room condition.
* ¹ "roo	om condition" Tempe	strength		Post-treatment : Capacitor should be stored for 1 to 2 h at *1room condition.
* ¹ "roo	om condition" Tempe	strength		Post-treatment : Capacitor should be stored for 1 to 2 h at *1room condition.
* ¹ "ro	om condition" Tempe	strength		Post-treatment : Capacitor should be stored for 1 to 2 h at *1room condition.
* ¹ "ro	om condition" Tempe	strength		Post-treatment : Capacitor should be stored for 1 to 2 h at *1room condition.
* ¹ "ro	om condition" Tempe	strength		Post-treatment : Capacitor should be stored for 1 to 2 h at *1room condition.
* ¹ "ro	om condition" Tempe	strength		Post-treatment : Capacitor should be stored for 1 to 2 h at *1room condition.
*1 "ro	om condition" Tempe	strength		Post-treatment : Capacitor should be stored for 1 to 2 h at *1room condition.
*1 "ro	om condition" Tempe	strength		Post-treatment : Capacitor should be stored for 1 to 2 h at *1room condition.
* ¹ "ro	om condition" Tempe	strength		Post-treatment : Capacitor should be stored for 1 to 2 h at *1room condition.
* ¹ "ro	om condition" Tempe	strength		Post-treatment : Capacitor should be stored for 1 to 2 h at *1room condition.
*1 "ro	om condition" Tempe	strength		Post-treatment : Capacitor should be stored for 1 to 2 h at *1room condition.
*1 "ro	om condition" Tempe	strength		Post-treatment : Capacitor should be stored for 1 to 2 h at *1room condition.
* ¹ "ro	om condition" Tempe	strength		Post-treatment : Capacitor should be stored for 1 to 2 h at *1room condition.
	om condition" Tempe	strength		Post-treatment : Capacitor should be stored for 1 to 2 h at *1room condition.


	Item	Appearance Capacitance change I.R. Dielectric strength	Specification No marked defect. Within ±20% 3000MΩ min. Per item 3	Ti fo Ti fo th	kV imp re appl 50 50 30 0 4 he cap or a per he air i f 125+2 hrough o a AC5 f mains ne volta	dividual ulses fied to (%) TT to cout the 550V(r. frequ	al capacitor s for three time life test. r 2 s are placed 1000 h. oven is main s, and relative t test, the ca m.s.)<50/60	hould be si es. Then the ront time (T1) = ime to half-value tim a circula tained at a e humidity of apacitors ar Hz> alterna	$e(T2) = 50 \mu s$ ting air oven temperature of 50% max e subjected		
19 Tem		Capacitance change I.R. Dielectric	Within $\pm 20\%$ 3 000 M Ω min.	Ti fo Ti fo th	he cap he cap from a per he air i f 125+2 hrough f mains he volta	dividual ulses fied to (%) TT to cout the 550V(r. frequ	al capacitor s for three time life test. r 2 s are placed 1000 h. oven is main s, and relative t test, the ca m.s.)<50/60	ront time (T1) = ime to half-value t in a circula tained at a e humidity of apacitors ar Hz> alterna	e capacitors 1.7μ s=1.67T $e(T2) = 50 \mu$ s ting air oven temperature of 50% max e subjected		
		I.R. Dielectric		TI fo TI of TI to of th	he cap he cap for a per he air i f 125+2 hrough o a AC5 f mains he volta	acitors iod of n the c 550V(r. frequ	rz s are placed 1 000 h. oven is main c, and relative e test, the ca m.s.)<50/60	ront time (T1) = ime to half-value tin a circula tained at a e humidity of apacitors ar Hz> alterna	1.7 μ s=1.67T e (T2) = 50 μ s ting air oven temperature of 50% max e subjected		
				fo TI of TI to of th	he cap o – he cap or a per he air i f 125+2 hrough o a AC5 f mains ne volta	acitors iod of n the c 2/-0 °C out the 550V(r.	r2 s are placed 1 000 h. oven is main s, and relativ. e test, the ca m.s.)<50/60	in a circula tained at a e humidity of apacitors ar Hz> alterna	$e(T2) = 50 \mu s$ ting air oven temperature of 50% max e subjected		
				fo TI of TI to of th	he cap or a per he air i f 125+2 hrough a AC5 f mains ne volta	acitors iod of n the c 2/-0 °C out the 550V(r. ; frequ	are placed 1 000 h. oven is main , and relative e test, the ca m.s.)<50/60	in a circula tained at a e humidity pacitors ar Hz> alterna	temperature of 50% max e subjected		
				fo TI of TI to of th	or a per he air i f 125+2 hrough o a AC5 f mains ne volta	acitors iod of n the o 2/-0 °C out the 550V(r. 550V(r.	are placed 1 000 h. oven is main , and relative e test, the ca m.s.)<50/60	tained at a e humidity pacitors ar Hz> alterna	temperature of 50% max e subjected		
				P		The capacitors are placed in a circulating air oven for a period of 1000 h. The air in the oven is maintained at a temperature of 125+2/-0 °C, and relative humidity of 50% max Throughout the test, the capacitors are subjected to a AC550V(r.m.s.)<50/60Hz> alternating voltage of mains frequency, except that once each hour the voltage is increased to AC1000V(r.m.s.) for 0.1					
				P			AC4000\ *1room co before in (Do not a t : Capacito	for 1 h, and /(r.m.s.) 60 ondition for itial measur apply to Ch r should be	d apply the s then placed a 24 ± 2 h rements. ar. SL) e stored for		
	perature and	Appearance	No marked defect.	ТІ	he cap	acitor		t *1room co ubiected to	5 temperature		
	immersion cycle	Capacitance change	Char. SL : Within ±5% Char. B : Within ±10%				onsecutively				
		onunge	Char. E : Within ±20%	<	Tempe	rature	cycle>				
		D.F.	Char. SL : 2.5% max.		St	tep	Tempera		Time		
			Char. B, E : 5.0% max.			1	-40+		30 min		
		I.R.	3000MΩ min.			2 3	Room +125-		3 min 30 min		
		Dielectric strength	Per item 3			4	Room		3 min		
				<	Cycle time:5 cycles						
					Step	Temp	erature(°C)	Time	Immersion water		
					1	+6	65+5/-0	15 min	Clean water		
					2		0±3	15 min	Salt water		
					Cycle time:2 cycles Pre-treatment : Capacitor should be stored at 125±2°C for 1 h, and apply the AC4000V(r.m.s.) 60s then placed *1room condition for 24±2 h before initial measurements. (Do not apply to Char. SL) Post-treatment : Capacitor should be stored for 24±2 h at *1room condition.						

Unit : mm

			01111 . 111111			
Item	Code	Dimensions	Remarks			
Pitch of component	Р	25.4±2.0				
Pitch of sprocket hole	P0	12.7±0.3				
Lead spacing	F	10.0±1.0				
Length from hole center to lead	P1	7.7±1.5				
Body diameter	D	Please refer to [P	^v art number list].			
Deviation along tape, left or right	ΔS	0±2.0	They include deviation by lead bend .			
Carrier tape width	W	18.0±0.5				
Position of sprocket hole	W1	9.0±0.5	Deviation of tape width direction			
Lead distance between reference and bottom planes	H0	18.0± ^{2.0}				
Protrusion length	Q	+0.5~-1.0				
Diameter of sprocket hole	φD0	4.0±0.1				
Lead diameter	φd	0.60±0.05				
Total tape thickness	t1	0.6±0.3				
Total thickness, tape and lead wire	t2	1.5 max.	They include hold down tape thickness.			
Deviation across tape, front	∆h1					
Deviation across tape, rear	∆h2	2.0 max.				
Portion to cut in case of defect	L	11.0± ⁰ _{1.0}				
Hold down tape width	W0	11.5 min.				
Hold down tape position	W2	1.5±1.5				
Coating extension on lead	е	Up to the end of c	rimp			
Body thickness	Т	Please refer to [Part number list].				

EU RoHS and Halogen Free

This products of the following crresponds to EU RoHS and Halogen Free

(1) RoHS

EU RoHs 2011/65/EC compliance

maximum concentration values tolerated by weight in homogeneous materials •1000 ppm maximum Lead

- •1000 ppm maximum Mercury
- •100 ppm maximum Cadmium
- •1000 ppm maximum Hexavalent chromium
- •1000 ppm maximum Polybrominated biphenyls (PBB)
- •1000 ppm maximum Polybrominated diphenyl ethers (PBDE)

(2) Halogen-Free

The International Electrochemical Commission's (IEC) Definition of Halogen-Free (IEC 61249-2-21) compliance

- •900 ppm maximum chlorine
- •900 ppm maximum bromine
- •1500 ppm maximum total chlorine and bromine