XK493L6D-WH1-5700 Product Specification Rev. A

BOE Technology Group Co.,Ltd

	Prepared By	Reviewed By	Approved By
Signature/Date			

SPEC. NUMBER A	PRODUCT GROUP TFT-OLED	Rev. A	ISSUE DATE 2022.12 .06	PAGE $10 F 32$
B2014-Q011-O (1/3)	A4(210 X 297)			

\section*{| | PRODUCT GROUP | REV | ISSUE DATE |
| :---: | :---: | :---: | :---: |
| | Customer SPEC | Rev. A | 2022.12 .06 |
 REVISION HISTORY}

$(\sqrt{ })$ preliminary specification
()Final specification

Revision No.	Page	Description of changes	Date	Prepared
Rev.A	32	Initial Release	2022.12 .06	-

SPEC. NUMBER A	SPEC. TITLE XK493L6D-WH1-5700 Product Specification Rev. A	PAGE 2 OF 32
B2014-Q011-O (2/3)	A4(210 X 297)	

			PRODUCT GROUP	REV	ISSUE DATE
			Customer SPEC	Rev. A	2022.12.06
Contents					
	No.	Item			Page
		Cover			1
		Revision History			2
		Contents			3
	1.0	General Description			4
	2.0	Absolute Maximum Ratings			6
	3.0	Electrical Specifications			7
	4.0	Optical Specifications			8
	5.0	Interface Connection			11
	6.0	Signal Timing Specifications			13
	7.0	Input Signals, Display Colors \& Gray Scale of Colors			17
	8.0	Power Sequence			18
	9.0	Mechanical Characteristics			20
	10.0	Reliability Test			24
	11.0	Handling \& Cautions			25
	12.0	Product Serial Number			28
	13.0	Packing			29
	14.0	Appendix			31
SPEC. NUMBER A			```SPEC. TITLE XK493L6D-WH1-5700 Product Specification Rev. A```		PAGE $3 \text { OF } 32$

$B>E$	PRODUCT GROUP	REV	ISSUE DATE
	Customer SPEC	Rev. A	

1.0 GENERAL DESCRIPTION

1.1 Introduction

The XK493L6D-WH1-5700 is a Color Active Matrix Organic Light Emitting Diode Display (OLED). It is a Top emission display type. It has a 49.3 inch diagonally measured active display area with half FHD resolution (540 vertical by 1920 horizontal pixel array).

Each pixel is divided into Red, Green, Blue and White sub-pixels or dots which are arrayed in squares. Gray scale or the luminance of the sub-pixel color is determined with a 10 -bit gray scale signal for each dot. Therefore, it can present a palette of more than 1.07 B (true) colors.

It has been designed to apply the 10-bit 4-lane V by One interface.
It is intended to support TV where high brightness, super wide viewing angle, high color gamut, high color depth and fast response time are important.

SPEC. NUMBER A	SPEC. TITLE XK493L6D-WH1-5700 Product Specification Rev. A	PAGE 4 OF 32
B2014-Q011-O (3/3)	A4(210 X 297)	

1.2 General Specification
< Table 1. General Specifications >

Parameter	Specification
Active Screen Size	$1206.53 \mathrm{~mm}(\mathrm{H}) \times 339.34 \mathrm{~mm}(\mathrm{~V})$
Outline Dimension (Typ.)	$\begin{gathered} 1218.33 \mathrm{~mm}(\mathrm{H}) \times 357.74 \mathrm{~mm}(\mathrm{~V}) \times 1.4 \mathrm{~mm}(\mathrm{~B}) \\ \text { (Typ.) } \end{gathered}$
Pixel Format	1920 horiz. by 540 vert. Pixels, BWGR Quad arrangement
Pixel pitch	$628.4 \mu \mathrm{~m}(\mathrm{H}) \times 628.4 \mu \mathrm{~m}(\mathrm{~V})$
Color Depth	10bit(R), 1.07Billon colors
Luminance, White	400/150 cd/m2 (Center 1point ,Typ.)
Color Viewing Angle	R/L 120 (min.), ($\Delta u^{\prime} v^{\prime}= \pm 0.02$)
Power Consumption	Total 89W@W255 Pattern [Logic = 28W, ELVDD = 61W] (Typ.)
Weight	1.55 Kg (Typ.)
Display Mode	Normally Transparent
Total transmittance	40\%

SPEC. NUMBER A	SPEC. TITLE XK493L6D-WH1-5700 Product Specification Rev. A	PAGE 5 OF 32
B2014-Q011-O (3/3)	A4(210 X 297)	

2.0 ABSOLUTE MAXIMUM RATINGS

The followings are maximum values which, if exceed, may cause faulty operation or damage to the unit. The operational and non-operational maximum voltage and current values are listed in Table 2.
< Table 2. Open Cell Electrical Specifications >
[VSS=ELVSS=OV]

Parameter	Symbol	Min.	Max.	Unit	Remark
Power Supply Voltage	VDD	VSS-0.3	13.5	V	$\mathrm{Ta}=25^{\circ} \mathrm{C}$
	ELVDD	ELVSS-0.3	26.0	V	
TCON Option Voltage	$V_{\text {LoGIC }}$	VSS-0.3	3.8	V	
Operating Temperature	T_{OP}	0	+45	${ }^{\circ} \mathrm{C}$	Note 1
Panel Front Temperature	$\mathrm{T}_{\text {SUR }}$	-	+60	${ }^{\circ} \mathrm{C}$	Note 2
Storage Temperature	$\mathrm{T}_{\text {SUR }}$	-20	+60	${ }^{\circ} \mathrm{C}$	Note 1
	$\mathrm{T}_{\text {ST }}$	-20	+60	${ }^{\circ} \mathrm{C}$	
Operating Ambient Humidity	Hop	10	90	\%RH	
Storage Humidity	Hst	10	90	\%RH	

Note 1 : Temperature and relative humidity range are shown in the figure below. Wet bulb temperature should be $39^{\circ} \mathrm{C}$ max. and no condensation of water.
Note 2 : The maximum operating temperatures is based on the test condition that the surface temperature of display area is less than or equal to $68^{\circ} \mathrm{C}$ with OLED module alone in a temperature controlled chamber. Thermal management should be considered in final product design to prevent the surface temperature of display area from being over $68^{\circ} \mathrm{C}$. The range of operating temperature may be degraded in case of improper thermal management in final product design.

SPEC. NUMBER A	SPEC. TITLE XK493L6D-WH1-5700 Product Specification Rev. A	PAGE 6 OF 32
B2014-Q011-O (3/3)	A4(210 X 297)	

3.0 ELECTRICAL SPECIFICATIONS

3.1 Electrical Characteristics

It requires two power inputs. One is employed to power for the circuit. The other is used for the ELVDD.
< Table 3. Electrical Specifications >
$\left[\mathrm{Ta}=25 \pm 2^{\circ} \mathrm{C}\right]$

Parameter		Symbol	Values			Unit	Remark	
		Min	Typ	Max				
Power Supply Input Voltage			VDD	10.8	12	13.2	V	
		ELVDD	22.5	24	25.5			
Power Supply Current		$I_{\text {VDD }}$	-	-	2.5	A	Note2	
		-	-	4.1	Note3			
		$\mathrm{I}_{\text {ELVDD }}$	-	-	2.5		Note4	
				5	Note5			
Power Consumption			$\mathrm{P}_{\mathrm{VdD}}$	-	-	30.0	Watt	Note2
		-		-	49.2	Note3		
		$P_{\text {ELVDD }}$	-	-	61	Note4		
		-	-	120	Note5			
Rush current			$\mathrm{I}_{\text {RUSH VDD }}$	-	-	8	A	Note6
		$\mathrm{I}_{\text {RUSH ELVDD }}$	-	-	7			
TTL Interface	Input High Threshold Voltage	VIH	2.7	3.3	3.4	V		
	Input Low Threshold Voltage	VIL	0	-	0.8			
	Output High Threshold Voltage	VOH	2.7	3.3	3.4			
	Output Low Threshold Voltage	VOL	0	-	0.8			

Note1. The specified current and power consumption are under the VIN=12.0V, ELVDD=24.0V Ta=25 $\pm 2^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{V}}$ $=60 \mathrm{~Hz}$ condition.
Note2. The current ($\mathrm{I}_{\text {VDD }}$) is specified at the standard moving picture(IEC62087).
Note3. The current ($\mathrm{I}_{\text {VDD }}$) is specified at the maximum current pattern (1by1 Horizontal Pattern).
Note4. The current ($l_{\text {ELvDD }}$) is specified at the white pattern (W255).
Note5. The current (I $\mathrm{I}_{\text {ELvDD }}$) is specified at the maximum current pattern (Secondary Color Pattern).
Note6. The Power Supply Input Voltage(ELVDD) ripple must be in 60 mV .
Note7. The duration of rush current is about 2 ms and rising time of power input is $1 \mathrm{~ms}(\mathrm{~min})$.
SPEC. NUMBER \quad SPEC. TITLE
PAGE
XK493L6D-WH1-5700 Product Specification Rev. A

4.0 OPTICAL SPECIFICATION

Optical characteristics are determined after the unit has been 'ON' and stable in a dar k environment at $25 \pm 2^{\circ} \mathrm{C}$. The values are specified at distance 50 cm from the OLED sur face at a viewing angle of Φ and θ equal to 0°.
< Table 4. Optical Table >
$\mathrm{Ta}=25 \pm 2^{\circ} \mathrm{C}, \mathrm{VDD}=12 \mathrm{~V}, \mathrm{ELVDD}=24.0 \mathrm{~V}, \mathrm{f}_{\mathrm{V}}=60 \mathrm{~Hz}$,

Parameter		Symbol	Min	Typ	Max	Unit	Remark
Contrast Ratio		CR		100,000			1
Surface Luminance, white		Normal	120	150	-	$\mathrm{cd} / \mathrm{m}^{2}$	2
		Peak	320	400	-		
Luminance Uniformity		$\delta_{\text {WHITE }}$	70	80	-	\%	3
Response Time		G to G	-	1	3	ms	4
Color Coordinates [CIE1931]	White	W_{x}	$\begin{aligned} & \text { TYP. } \\ & -0.02 \end{aligned}$	0.285	$\begin{aligned} & \text { TYP. } \\ & +0.02 \end{aligned}$		5
		W_{y}		0.294			
	Red	R_{x}		-			
		R_{y}		-			
	Green	G_{x}		-			
		G_{y}		-			
	Blue	B_{x}		-			
		B_{y}		-			
Color Temperature			-	9200	-	K	
Color Gamut (DCIP3)			-	90	-	\%	
Color Viewing Angle (CR > 10)	Horizontal	Θ_{3}	60	-	-	Deg.	6
		Θ_{9}	60	-	-		
	Vertical	Θ_{12}	60	-	-		
		Θ_{6}	60	-	-		
Life Time (B10)		Hrs		40000			7
Gray Scale				2.2			8

SPEC. NUMBER A	SPEC. TITLE XK493L6D-WH1-5700 Product Specification Rev. A	PAGE 8 OF 32
B2014-Q011-O (3/3)	A4(210 X 297)	

PRODUCT GROUP
Customer SPEC
Note :

1. Contrast measurements shall be made at viewing angle of $\theta=0^{\circ}$ and at the center of the OLE D surface (See Figure 1). Luminance shall be measured with all pixels in the view field set first to white, then to the dark (black) state. Luminance Contrast Ratio (CR) is defined mathematically.

$$
\text { Contrast Ratio }=\frac{\text { Surface Luminance with all white pixels }}{\text { Surface Luminance with all black pixels }}
$$

It is measured at center 1-point.
2. Normal full white luminance is determined with 100% APL after 30 minutes 'ON' with WRGB rolling pattern in a dark environment at $25 \pm 2^{\circ} \mathrm{C}$. It is the luminance value at center 1 -point across the OLED surface 50 cm from the surface with all pixels displaying white. Peak luminance is determined with 25% APL after 60 seconds at least 'ON' with 25% white window box. Peak luminance measurement is proceeded after measuring normal luminance. For more information see the Fig. 2.
3. The variation in surface luminance, δ WHITE is defined as : δ WHITE(9P) = Minimum(L on1,, L on9) / Maximum(L on1 L on9)
Where L on 1 to L on9 are the luminance with all pixels displaying white at 9 locations .
For more information see the Fig. 2.
4. Response time is the time required for the display to transit from $G(N)$ to $G(M)$ (Rise Time, $\operatorname{Tr}_{\mathrm{R}}$) and from $\mathrm{G}(\mathrm{M})$ to $\mathrm{G}(\mathrm{N})$ (Decay Time, Tr_{D}). Response time depends on the temperature.(In lower temperature, it becomes longer.)
For additional information see the FIG. 3. ($\mathrm{N}<\mathrm{M}$).
5. The color chromaticity coordinates specified in Table 4.shall be calculated from the spectral data measured with all pixels first in red, green, blue and white. Measurements shall be made at the center of the panel.
6. We refer to $\theta_{\varnothing=0}\left(=\theta_{3}\right)$ as the 3 o'clock direction (the "right"), $\theta_{\varnothing=90}\left(=\theta_{12}\right)$ as the 12 o'clock direction ("upward"), $\theta_{\varnothing=180}\left(=\theta_{9}\right)$ as the 9 o'clock direction ("left") and $\theta_{\varnothing=270}\left(=\theta_{6}\right)$ as the 6 o'clock direction ("bottom"). While scanning θ and/or \varnothing, the center of the measuring spot on the Display surface shall stay fixed. The measurement shall be executed after 30 minutes warm-up period. VDD shall be $12.0 \mathrm{~V}+/-10 \%$ at $25^{\circ} \mathrm{C}$. Optimum viewing angle direction is 6 'clock.
Viewing angle is the angle at which the contrast ratio is greater than 10 . The viewing are determined for the horizontal or 3,9 o'clock direction and the vertical or 6,12 o'clock direction with respect to the optical axis which is normal to the OLED surface.
7. IEC62087 standard video with ECD every 4 hours at room temperature $25^{\circ} \mathrm{C}$ (If the cumulativ e time of usage is over 4 hours, ECD compensation should be performed.)
8. Gray scale specification.

Gamma Value is approximately 2.2.
SPEC. NUMBER \quad SPEC. TITLE

XK493L6D-WH1-5700 Product Specification Rev. A

$B>E$	PRODUCT GROUP	REV	ISSUE DATE
	Customer SPEC	Rev. A	2022.12 .06

< Figure 1. Measurement Set Up >

< Figure 2-1. 9 Points for Luminance Measure with 100% APL>

< Figure 2-1. 1 Points for peak luminance measure with 25% APL >
< Figure 3. Response Time Testing >

SPEC. NUMBER A	SPEC. TITLE XK493L6D-WH1-5700 Product Specification Rev. A	PAGE
10 OF 32		
B2014-Q011-O (3/3)	A4(210 X 297)	

$8>E$	PRODUCT GROUP	REV	ISSUE DATE
	Customer SPEC	Rev. A	2022.12 .06

5.0 INTERFACE CONNECTION.

This OLED module employs two kinds of connectors, 14-pin connector is used for the EL power and 51-pin connector is used for the module electronics

5.1 OLED Module (Signals)

< Table 5.1. MODULE CONNECTOR(CN3) PIN CONFIGURATION>

No	Symbol	Description
1	VDD	Power Supply +12.0 V
2	VDD	Power Supply +12.0 V
3	VDD	Power Supply +12.0 V
4	VDD	Power Supply +12.0 V
5	NC	No Connection
6	GND	Ground
7	GND	Ground
8	GND	Ground
9	GND	Ground
10	ECD	Compensation flag, Set \leftarrow Module
11	AC_Det	AC_Det $($ H=On), Set \rightarrow Module
12	Error Detection	'H' =Error, 'L' $=$ Normal, Set \leftarrow Module
13	I2C-SDA1	I2C for Customer
14	I2C-SCL1	
15	NC	
16	NC	
17	NC	
18	NC	
19	NC	
20	ELVDD_DET	ELVDD reset, Set \leftarrow Module
21	NC	No Connection
22	NC	No Connection
23	NC	No Connection
24	GND	Ground
25	HTPDN	Hot plug detect
26	LOCKN	Lock detect

No	Symbol	Description
27	GND	Ground
28	Rx0N	V-by-One HS Data Lane 0
29	Rx0P	V-by-One HS Data Lane 0
30	GND	Ground
31	Rx1N	V-by-One HS Data Lane 1
32	Rx1P	V-by-One HS Data Lane 1
34	GND	Ground
34	Rx2N	V-by-One HS Data Lane 2
35	Rx2P	V-by-One HS Data Lane 2
36	GND	Ground
37	Rx3N	V-by-One HS Data Lane 3
38	Rx3P	V-by-One HS Data Lane 3
39	GND	Ground
40	NC	No Connection
41	NC	No Connection
42	NC	No Connection
43	NC	No Connection
44	NC	No Connection
45	NC	No Connection
46	NC	No Connection
47	NC	No Connection
48	NC	No Connection
49	NC	No Connection
50	NC	No Connection
51	NC	No Connection
-	-	-

1. All GND pins should be connected together.
2. All Input levels of V-by-One signals are based on the V-by-One HS Standard.
3. Specific pin No. \#10 is used for compensation when power turn off.
4. Specific pin No. \#12 is used for "Power Error detection" of the OLED module.
5. Specific pin No. \#13 and \#14 are used for Customer Signal Input, the I2C definition refer to I2C register map.
6. Specific pin No. \#20 is only used for ELVDD level monitoring of the OLED module.
7. V-by-One Connector(CON5): FI-RE51S-HF(manufactured by JAE) and Mating connector: FI-RE51HL(JAE) or compatible.

Rear view of OLED Module

SPEC. NUMBER

PRODUCT GROUP	REV	ISSUE DATE
Customer SPEC	Rev. A	2022.12 .06

5.2 OLED Module (Powers)

- ELVDD Connector(CN2): CI0114M1HR0-NH(manufactured by CviLux) or compatible -Mating Connector : CI0114S0000 (manufactured by CviLux) or compatible
< Table 6. ELVDD CONNECTOR (CN2) PIN CONFIGURATION>

CON2		
Pin NO	Symbol	Description
1	ELVSS	OLED Ground
2	ELVSS	OLED Ground
3	ELVSS	OLED Ground
4	ELVSS	OLED Ground
5	ELVSS	OLED Ground
6	ELVSS	OLED Ground
7	ELVSS	OLED Ground
8	ELVDD	OLED Power Supply +24V
9	ELVDD	OLED Power Supply +24V
10	ELVDD	OLED Power Supply +24V
11	ELVDD	OLED Power Supply +24V
12	ELVDD	OLED Power Supply +24V
13	ELVDD	OLED Power Supply +24V
14	ELVDD	OLED Power Supply +24V

Rear view of OLED Module

SPEC. NUMBER A	SPEC. TITLE XK493L6D-WH1-5700 Product Specification Rev. A	PAGE
	OF 32	
B2014-Q011-O (3/3)	A4 X 297)	

PRODUCT GROUP	REV	ISSUE DATE
Customer SPEC	Rev. A	2022.12 .06

6.0 SIGNAL TIMING SPECIFICATION

Table 7 shows the signal timing required at the input of the V-by-One transmitter. All of the interface signal timings should be satisfied with the following specification for normal opera tion.

> < Table 7. Timing Table >

	Parameter	Symbol	Min	Typ.	Max.	Unit	Remarks
DCLK frequency		1/Tclk	74	74.25	75.5	MHz	
Horizontal section	Horizontal Total	HT	548	550	552	Tclk	Note1
	Horizontal Blank	HB	34	37	40	Tclk	
	Valid Data Width	HV	-	480	-	Tclk	
Vertical section	Frame Rate	fV	-	120	-	Hz	
	Vertical Total	VT	-	564	-	HT	Note1
	Vertical Sync	vs	2	3	4	HT	
	Vertical Back Porch	VBP	15	18	20	HT	
	Vertical Front Porch	VFP	2	3	4	HT	
	Valid Data Width	vv	540	540	540	HT	

Note1: Timing should be set based on clock(DCLK) frequency.
Note2: This product is DE only mode. The input of Hsync \& Vsync signal does not have an effect on normal operation.
Note3: The performance of the electro-optical characteristics may be influenced by variance of the vertical refresh rate and the horizontal frequency.
Note4: HSync and VSync are High active.

$\begin{gathered} \text { SPEC. NUMBER } \\ \text { A } \end{gathered}$	SPEC. TITLE XK493L6D-WH1-5700 Product Specification Rev. A	PAGE 13 OF 32

6.1 V by One Eye Mask Specification.

< Table 8. Signal Timing Waveforms Table >

Parameter	Symbol	Condition	Min	Typ	Max	Unit
Unit Interval(VBO Operation Bit Rate)	tRBIT	3-byte	380	tTCIP/30	1667	PS
		4 -byte	285	tTCIP/40	1250	PS
		5 -byte	266	tTCIP/50	1000	PS
Eye Width at Package Pin	tREYE	-	-	0.5	-	UI
Eye Width Position A at Package Pin	tA	-	-	0.25	-	UI
Eye Width Position B at Package Pin	tB	-	-	0.3	-	UII
Eye Width Position Cat Package Pin	tC	-	-	0.7	-	UI
Eye Width Position D at Package Pin	tD	-	-	0.75	-	UI
Eye Width Position E at Package Pin	tE	-	-	0.7	-	UI
Eye Width Position F at Package Pin	tF	-	-	0.3	-	UI
Intra - pair Skew	TTOSK_intra	-	-0.3	-	0.3	UII
Intra - pair Skew	TTOSK_inter	-	-500	-	500	UI
SSCG	-	$30 K H z$	-0.5		0.5	$\%$

$X=0$ UI
Note1: All Input levels of V by One signals are based on the V by One HS Standard.
Note2 : The eye diagram is measured by the oscilloscope and receiver CDR characteristic must be emulated
Note3 : System side have to put pull high resistor on LOCKN/HTPDN pins.

SPEC. NUMBER A	SPEC. TITLE XK493L6D-WH1-5700 Product Specification Rev. A	PAGE
	OF 32	
B2014-Q011-O (3/3)	A4(210 X 297)	

$B>E$	PRODUCT GROUP	REV	ISSUE DATE
	Customer SPEC	Rev. A	

6.2 V by One Input Signal Timing Diagram.

$2^{\text {nd }}$ Lane

Valid data
$3^{\text {rd }}$ Lane

$4^{\text {th }}$ Lane
 1919

Note1: HB=HS+HBP+HFP
Note2:Signal rising/falling edge should be aligned as the diagram.

SPEC. NUMBER A	SPEC. TITLE XK493L6D-WH1-5700 Product Specification Rev. A	PAGE 15 OF 32
B2014-Q011-O (3/3)	A4(210 X 297)	

Notes: $1.1 \mathrm{UI}=1 /$ serial data rate
2. it is the time difference between the true and complementary single-ended signals.
3. it is the time difference of the differential voltage between any two lanes in one sub block.
4. it is the time difference of the differential voltage between any two blocks in one IP.

7.0 INPUT SIGNALS, BASIC DISPLAY COLORS \& GRAY SCALE OF COLORS

The brightness of each primary color (red, green, blue) is based on the 10bit or 8bit gray scale data input for the color. The higher binary input, the brighter the color. Table 8 provides a refer ence for color versus data input.

< Table 9. Input Signal and Display Color Table >

Color		Input Color Data																													
		MSB				RED			LSB			MSB			GREEN				LSB			MSB			BLUE				LSB		
		R9		R7	R6	R5	R4	R3	R2	R1	RO	G9	G8	G7	G6	G5	G4	G3	G2	G1	GO	B9	B8	B7	B6	B5	B4	B3	B2	B1	B0
Basic Color	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1023)	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1023)	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
	Blue(1023)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
	Cyan	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
R	RED(000)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED(001)	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	RED(1022)	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED(1023)	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
G	Green (000)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green (001)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0

	Green (1022)	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0
	Green (1023)	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
B	Blue(000)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(001)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

	Blue(1022)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	0
	Blue(1023)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1

$B>E$	PRODUCT GROUP	REV	ISSUE DATE
	Customer SPEC	Rev. A	2022.12 .06

8.0 POWER SEQUENCE

8.1 Power ON Sequence.

POS $=1$ Enable Signal
< Table 10. Sequence Table >

Parameter	Value			Unit	Notes
	Min	Typ	Max		
T1	1	-	35	ms	
T 2	1	-	500	ms	
T3	5	-	-	sec	
T4	5	-	50	ms	
T9	1000	-	3000	ms	

Notes: 1. Even though T1 is over the specified value, there is no problem if I2T spec of fuse is satisfied.
2.The T3 is recommended value, the case when failed to meet a minimum specification, abnormal display would be shown.
3. Even though T4 is over the specified value, there is no problem if I2T spec of fuse is satisfied.
4. Outside the T9 sequence, $\mathrm{POS}=1$ signal is invalid.

SPEC. NUMBER A	SPEC. TITLE XK493L6D-WH1-5700 Product Specification Rev. A	PAGE
18 OF 32		
B2014-Q011-O (3/3)	A4(210 X 297)	

PRODUCT GROUP	REV	ISSUE DATE
Customer SPEC	Rev. A	2022.12 .06

8.2 Power Off Sequence1

< Table 11. Sequence Table >

Parameter	Value			Unit	Notes
	Min	Typ	Max		
T1	1	-	35	ms	1
T2	1	-	500	ms	
T3	5	-	-	sec	2
T4	5	-	50	ms	3
T5	1500	2000	-	ms	
T6	1	-	-	sec	

Notes: 1. Even though T1 is over the specified value, there is no problem if I2T spec of fuse is satisfied.
2.The T3 is recommended value, the case when failed to meet a minimum specification, abnormal display would be shown.

3 .Even though T4 is over the specified value, there is no problem if I2T spec of fuse is satisfied.

SPEC. NUMBER A	SPEC. TITLE XK493L6D-WH1-5700 Product Specification Rev. A	PAGE
	OF 32	
B2014-Q011-O (3/3)	A4(210 X 297)	

$B>E$	PRODUCT GROUP	REV	ISSUE DATE
	Customer SPEC	Rev. A	2022.12 .06

8.3 Power Off Sequence2

< Table 12. Sequence Table >

Parameter	Value			Unit	Notes
	Min	Typ	Max		
T1	1	-	35	ms	
T2	1	-	500	ms	
T3	5	-	-	sec	
T4	5	-	50	ms	
T5	50	-	-	ms	
T6	1	-	-	sec	
T7	315	-	300	sec	
T8 Compensation Period					

Notes: 1.The maximum 335sec corresponds to the compensation mode after power off.
2.When there is power on action before completing ECU operation, don't change ECU enable signal $(1 \rightarrow 0)$.Just do power off and power on.

SPEC. NUMBER A	SPEC. TITLE XK493L6D-WH1-5700 Product Specification Rev. A	PAGE 20 OF 32
A4(210 X 297)		

$B>E$	PRODUCT GROUP	REV	ISSUE DATE
	Customer SPEC	Rev. A	

9.0 MECHANICAL CHARACTERISTICS

< Table 12. Mechanical Characteristics>

Item	Value	
Outline Dimension (Base On Board Ass'y)	Horizontal	1218.33 mm
	Vertical	357.74 mm
	Thickness	1.4 mm (B)
Active Display Area (Base On Board Ass'y)	Horizontal	1206.53 mm
	Vertical	339.34 mm
Open Cell (Active Area ~ Edge Of Panel)	Horizontal	5.9 mm (Left) / 5.9 mm (Right)
	Vertical	5.9 mm (Top) / 12.5 mm (Bottom)
Weight	1.55 Kg (Typ.)	

Notes: Please refer to a mechanical drawing in terms of tolerance at the next page.

SPEC. NUMBER A	SPEC. TITLE XK493L6D-WH1-5700 Product Specification Rev. A	PAGE
21 OF 32		
B2014-Q011-O (3/3)	A4(210 X 297)	

$P \longrightarrow$ PRODUCT GROUP	REV	ISSUE DATE	
	Customer SPEC	Rev. A	2022.12 .06

9.0 MECHANICAL CHARACTERISTICS

9.1 Front View of Board Assembly

SPEC. NUMBER	SPEC. TITLE	PAGE
A	XK493L6D-WH1-5700 Product Specification Rev. A	22 OF 32

$\mathbf{B O E}$	PRODUCT GROUP	REV	ISSUE DATE
	Customer SPEC	Rev. A	2022.12 .06

Figure 9.1. Front View of Board Assembly(mm)

SPEC. NUMBER A	SPEC. TITLE XK493L6D-WH1-5700 Product Specification Rev. A	PAGE
23 OF 32		

$P \square$ PRODUCT GROUP	REV	ISSUE DATE	
	Customer SPEC	Rev. A	2022.12 .06

10.0 RELIABLITY TEST

The Reliability test items and its conditions are shown in below.
< Table 14. Reliability Test Parameters >

No	Test Items	Conditions
1	High Temperature Storage test	$\mathrm{Ta}=60^{\circ} \mathrm{C}, 240 \mathrm{hrs}$
2	Low temperature storage test	$\mathrm{Ta}=-20^{\circ} \mathrm{C}, 240 \mathrm{hrs}$
3	High temperature \& high humidity operation test	$\mathrm{Ta}=50^{\circ} \mathrm{C}, 80 \% \mathrm{RH}, 500 \mathrm{hrs}$
4	High temperature operation test	$\mathrm{Ta}=50^{\circ} \mathrm{C}, 240 \mathrm{hrs}$
5	Pallet packing vibration test (non-operating)	Wave form : random Vibration level : 1.2 Grms Bandwidth : 1-200Hz Duration : Z, 60 min
6	Low temperature operation test	$\mathrm{Ta}=-5{ }^{\circ} \mathrm{C}, 240 \mathrm{hrs}$

[^0]| SPEC. NUMBER
 A | SPEC. TITLE
 XK493L6D-WH1-5700 Product Specification Rev. A | PAGE |
| :---: | :--- | :---: |
| 24 OF 32 | | |

11.0 HANDLING \& CAUTIONS

Please pay attention to the followings when you use this OLED module.
(1) Cautions when taking out the OLED Module

- Pick the pouch only, when taking out Module from a shipping package.
(2) Cautions for handling the Module
- As the electrostatic discharges may break the OLED Module, handle the OLED Module with care. Peel a protection sheet off from the OLED Module surface as slowly as possible.
- Be careful not to place any extra mechanical stress to the OLED module when designing the set.
- Be cautious not to any extra strong force (mechanical shock, strong tapping etc.) to the module. It may cause abnormal operating or a malfunction in the OLED Module.
- OLED Panel are made from fragile glass material, impulse and pressure to the OLED Module should be avoided.
- As the surface of the polarizer is very soft and easily scratched, use a soft dry cloth without chemicals for cleaning.
- Do not pull the interface connector in or out while the OLED Module is operating.
- Put the panel display side down on a flat horizontal plane.
- Handle connectors and cables with care.
(3) Cautions for the operation
-When fixed patterns are displayed for a long time, remnant image is likely to occur.
- When the panel is operating, do not lose Data and CLK signals. If any one of these signals is lost, the OLED Module would be damaged.
- Obey the supply voltage sequence. If wrong sequence is applied, the panel would be damaged.
(4) Cautions for the atmosphere
- The spike noise causes the mis-operation of circuits. It should be lower than following voltage $: \mathrm{V}= \pm 200 \mathrm{mV}$ (Over and under shoot voltage).
- Dew drop atmosphere should be avoided.
- Do not store and/or operate the OLED Module in a high temperature and/or humidity atmosphere. Storage in an electro-conductive polymer packing pouch and under relatively low temperature atmosphere is recommended.
- Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between $5^{\circ} \mathrm{C}$ and $35^{\circ} \mathrm{C}$ at normal humidity.
- The polarizer surface should not come in contact with any other object. It is recommended that they are stored in the container in which they were shipped.

SPEC. NUMBER A	SPEC. TITLE XK493L6D-WH1-5700 Product Specification Rev. A	PAGE
25 OF 32		
B2014-Q011-O (3/3)	A4(210 X 297)	

PRODUCT GROUP	REV	ISSUE DATE
Customer SPEC	Rev. A	2022.12 .06

11.0 HANDLING \& CAUTIONS

(5) Display Condition

To extend the lifetime and optimize a function of module, the below-mentioned operating conditions are required.

- Normal operating condition
a. Temperature: $20 \pm 15^{\circ} \mathrm{C}$
b. Operating Ambient Humidity : $55 \pm 25 \%$
c. Only for indoor operation.
d. Display pattern: dynamic pattern (Moving picture)
e. TFT Compensation should need at least one time in a day.
- Refer to the 8.2. TFT compensation operation.
f. Lifetime in this spec. is guaranteed only when Display is used according to operating usages.
- Operating usages under abnormal condition.
a. Ambient condition: Well-ventilated place is recommended to set up Commercial system.
- Operating usages to reduce the risk of image sticking due to static image.
a. Suitable operating time: under 18 hours a day.
b. Information display recommended to use with moving picture.
c. Logo image recommended not to use. If needed, recommend that its position needs to be periodically shifted. Change colors themselves periodically.
d. The below-mentioned conditions are not recommended .
- Combination of Logo and background with largely different luminance.
- Using single moving picture. (Recommend to use different moving pictures.)
- The masked image with aspect ratio other than 16:9
- The division of screen

Note1) Abnormal condition just means conditions except normal condition.
Note2) Black image or moving image is strongly recommended as a screen saver. -If the module will be used under severe conditions such as high temperature, high humidity, display patterns or operation time etc., it is strongly recommended to contact BOE for the advice about usage and applications. Otherwise, its reliability and function may not be guaranteed..

SPEC. NUMBER A	SPEC. TITLE XK493L6D-WH1-5700 Product Specification Rev. A	PAGE 26 OF 32
B2014-Q011-O (3/3)	A4(210 X 297)	

$B>E$	PRODUCT GROUP	REV	ISSUE DATE
	Customer SPEC	Rev. A	

11.0 HANDLING \& CAUTIONS

(6) Cautions for the panel characteristics

- Do not apply fixed pattern data signal to the OLED Module at product aging.
- Applying fixed pattern for a long time may cause image sticking.
- Strong light exposure causes degradation of polarizer and color filter.
(7) Other cautions
- Do not disassemble and/or re-assemble OLED Module.
- Do not re-adjust variable resistor or switch etc.
-When returning the OLED Module for repair or etc., Please pack the OLED
Module not to be broken. We recommend to use the original shipping packages.

SPEC. NUMBER A	SPEC. TITLE XK493L6D-WH1-5700 Product Specification Rev. A	PAGE
27 OF 32		

$B \longrightarrow E$	PRODUCT GROUP	REV	ISSUE DATE
	Customer SPEC	Rev. A	2022.12 .06

12.0 PRODUCT SERIAL NUMBER

MDL ID Naming Rule:

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$
Code	S	L	S	5	1	2	3	5	9	0	0	0	0
Description	Model Code /GBN	Grade	Line	Year	Month	Mode Extension Code	Serial No $0000-Z Z Z Z ~$						

SPEC. NUMBER A	SPEC. TITLE XK493L6D-WH1-5700 Product Specification Rev. A	PAGE
28 OF 32		
B2014-Q011-O (3/3)	A4(210 X 297)	

PRODUCT GROUP	REV	ISSUE DATE
Customer SPEC	Rev. A	2022.12 .06

13.0 Packing

BOE provides the standard shipping container for customers, unless customer specifies their packing information. The standard packing method and Barcode information are shown in below.

13.1 Packing Order

- B/Ass'y Qty + PE Sheet / Box: 12pcs + 13pcs
- B/Ass'y Qty / Pallet : 72pcs
- Box Qty / Pallet: 6Box
(1)

(2)

(3)

(4)

(6)

No.	Description	Material
(2)	Pallet	Plywood
(b)	Carton Plate	Paper(SW)
(c)	Board Ass'y	-
(d)	PE Sheet	LDPE
(e)	Control PCB	PCB
(${ }^{\text {¢ }}$	FFC	CABLF
(9)	Cover Shield	AL
(1)	Top Packing	EPS
(i)	Bottom Packing	EPS
(i)	Angle Packing	Paper(SW)
(8)	Band	PP
(1)	Wrap	L-LDPE
(ii)	Label	YUPO

SPEC. NUMBER A	SPEC. TITLE XK493L6D-WH1-5700 Product Specification Rev. A	PAGE
29 OF 32		
B2014-Q011-O (3/3)	A4(210 X 297)	

PRODUCT GROUP	REV	ISSUE DATE
Customer SPEC	Rev．A	2022.12 .06

13．2 Packing Note

－Box Dimension ：1640＊1090＊152mm
－Package Quantity in one Box ：12pcs

13．3 Box Label

－Label Size ： $70 \mathrm{~mm}(\mathrm{~L}) \times 30 \mathrm{~mm}(\mathrm{~W})$
－Contents
Model ：XK493L6D－WH1
Q＇ty： 12 OLED Module in one box．
Serial No．：Box Serial No．See next page for detail description．
Date ：Packing Date
FG Code ：FG Code of Product

1．FG－CODE（前12位）
2．包装数量
3．Box ID
4．包装日期
5．客户端段物料号
6．FG－Code后四位
7．供应商代码

Box ID Naming Rule：

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$
Code	S	L	S	5	1	2	3	D	0	0	0	0	0
Description	Products GBN	Grade	Line	Year	Month	Revision Code	Serial No $00000-Z Z Z Z Z ~$						

SPEC．NUMBER A	SPEC．TITLE XK493L6D－WH1－5700 Product Specification Rev．A	PAGE
	30 OF 32	

$\boldsymbol{B E}$	PRODUCT GROUP	REV	ISSUE DATE
	Customer SPEC	Rev. A	2022.12 .06

14.0 APPENDIX

14.1 Input mode of pixel data

This OLED module only supports 1 division input mode.

Front View

4CH 1920*540@120Hz					
Lane0	1	5	$\ldots \ldots$.	1917	Pixel
Lane1	2	6	$\ldots \ldots$.	1918	Pixel
Lane2	3	7	$\ldots \ldots$.	1919	Pixel
Lane3	4	8	$\ldots \ldots .$.	1920	Pixel

SPEC. NUMBER A	SPEC. TITLE XK493L6D-WH1-5700 Product Specification Rev. A	PAGE
31 OF 32		
B2014-Q011-O (3/3)	A4(210 X 297)	

$B>E$	PRODUCT GROUP	REV	ISSUE DATE
	Customer SPEC	Rev. A	

14.1 I2C Register map

The following register is controlled by I2C Interface.

Device Address : 0xFO

Address	Register Name	Description	Remark
0×01	[7]:Power Off Enable	1: Power off, 0: Normal Display	
	[6]:POS Enable	1: Enable, 0: Disable	
	[5]:Reserved	-	-
	[4]:ECU Enable	1: Enable, 0: Disable	
	[3]:ECI Enable	1: Enable, 0: Disable	-
	[2]:Reserved	-	-
	[1]:Reserved	-	-
	[0]:Reserved	-	-
0x02	[7:0]:Reserved	-	

SPEC. NUMBER A	SPEC. TITLE XK493L6D-WH1-5700 Product Specification Rev. A	PAGE
32 OF 32		
B2014-Q011-O (3/3)	A4(210 X 297)	

[^0]: Before and after Reliability test, OLED Module should be operated with normal function.

