High Power LED S Series

o.7W White SPHWHTS2N100

Features

Package : Silicone covered lead frame substrate

Dimension: 2.3 mm x 2.3 mmChip Configuration: 1 chip

• ESD Voltage: Up to 8 kV acc. to ISO 10605-contact

Viewing Angle: 120°

• Qualifications: The product qualification test plan based on the guidelines of AEC-Q102

Table of Contents

1.	Characteristics	 3
2.	Product Code Information	 4
3.	Typical Characteristics Graphs	 7
4.	Soldering Temperature Location	 12
5.	Mechanical Dimension	 13
6.	Soldering Conditions	 14
7.	Tape & Reel	 15
8.	Label Structure	 16
9.	Packing Structure	 17
0.	Handling and use precautions	 18
1.	Company Information	 19

1. Characteristics

a) Typical Characteristics

 $[T_s = 25 \, {}^{\circ}C]^{[1]}$

ltem	Symbol	Value	Unit.
Luminous Flux (I _F =200 mA)	Ф٧	Тур. 90	lm
Forward Voltage (I _F = 200 mA)	V_{F}	Тур. 2.9	V
Viewing Angle	Ф	Typ. 120	0
Reverse Current	I _R	Not designed for reverse operation	
Real Thermal Resistance	D	Тур. 7.3	K/W
(Junction to Solder point)	$R_{th_J-S\ (Real)}$	Max. 10.9	r/vv
Electrical Thermal Resistance	D	Тур. 4.2	K/W
(Junction to Solder point)	R _{th_J-S} (Elec.)	Max. 6.3	r _V , v v
Radian Surface	Α	0.81	mm²

Note:

b) Absolute Maximum Rating

ltem	Symbol	Rating	Unit
Ambient / Operating Temperature	Ta	-40 ~ +125	°C
Storage Temperature	T_{stg}	-40 ~ +125	°C
LED Junction Temperature	Tj	150	°C
Maximum Forward current ^[2] (Ts:25°C) ^[3]	lF	300	mA
Minimum Forward current ^[2] (Ts:25°C) ^[3]	l _F	50	mA
Maximum Reverse current		Do not apply for reverse current	
ESD Sensitivity ^[4]	-	±8 for HBM	kV

Note:

- [2] Driving the product at forward current (IF) below Min. IF or above Max. IF may result in unpredictable behavior of the product.
- [3] The measurement condition means that temperature dependence is excluded by applying pulse current for typically 25 ms
- [4] It is included the device to protect the product from ESD.

^[1] The measurement condition means that temperature dependence is excluded by applying pulse current for typically 25 ms

2. Product Code Information

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
S	Р	Н	W	н	Т	S	2	N	1	0	0	Α	В	C	D	E	F

Digit	PKG Information						
1 2	company name and Samsung LED PKG (SP for Samsung PKG)						
3	power variant (H for automotive high power)						
4 5	color variant (WH for automotive white color)						
6	LED PKG version (T for initial version up)						
7 8	product configuration and type (S2 for automotive 2323 PKG type)						
9	lens configuration (N for no lens)						
10	Max power (1 for 1±0.5W)						
11,12	specific property (0 for default)						
13 14	forward voltage property						
15 16	CIE coordination property						
17 18	luminous flux property						

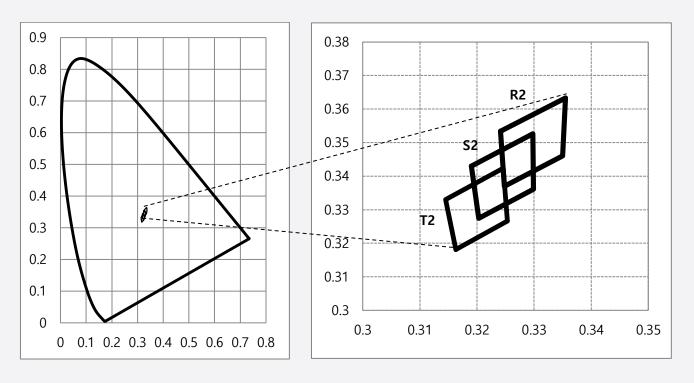
a) Luminous Flux Bins $^{[5]}\,$ (I_F = 200 mA, $T_S \! = 25^o C)$

Symbol	Flux Bin Code	Flux Range (lm)				
Symbol	Flux Bill Code	Min	Max			
	8A	80	88			
	1B	84	93			
Φ_{V}	2B	88	97			
	3B	93	102			
	4B	97	107			

b) Voltage Bins (I_F = 200 mA, T_S = 25 °C)

Symbol	Voltage Bin Code	Voltage Range (V)				
Symbol	Voltage Bill Code	Min	Max			
	1D	2.75	3			
V _F	1E	3	3.25			
	1H	3.25	3.4			

Note:

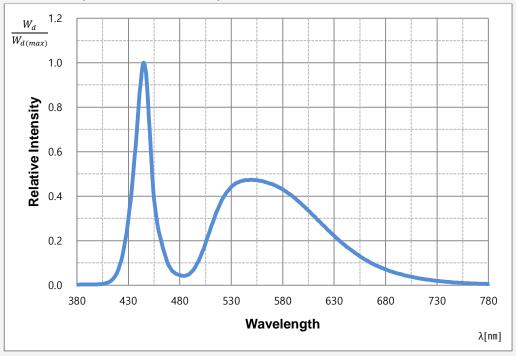

[5] Luminous flux measuring equipment : CAS140CT $\Phi_V \text{ and } V_F \text{ tolerances are } \pm 7\% \text{ and } \pm 0.1 \text{ V respectively}.$

c) Color Bin $^{[6]}(I_F = 200 \text{ mA})$

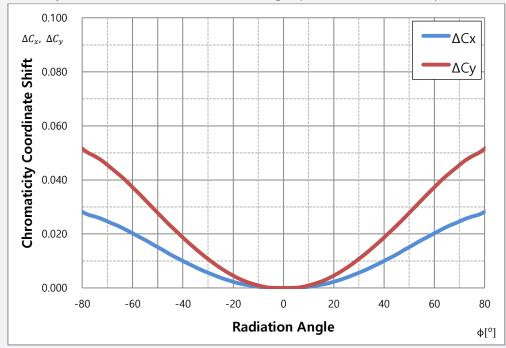
Symbol	Color Bin Code	Cx		Су					
	R2	0.3241	0.3248	0.3350	0.3355	0.3534	0.3370	0.3460	0.3633
Cx, Cy	\$2	0.3190	0.3203	0.3299	0.3298	0.3430	0.3274	0.3361	0.3526
	T2	0.3163	0.3145	0.3246	0.3253	0.3181	0.3330	0.3424	0.3266

Note

[6] Chromaticity coordinates: Cx, Cy according to CIE 1931. Cx and Cy tolerances are ±0.005, respectively.

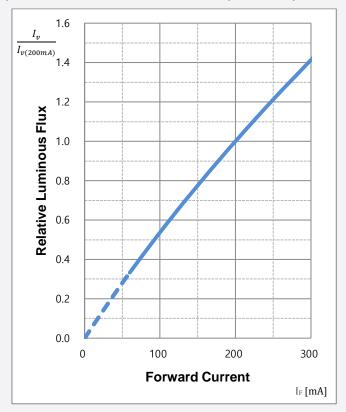


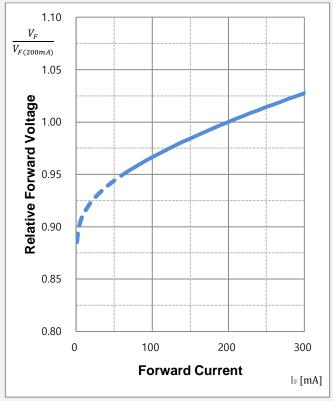
d) Luminous Flux Bins according to Color Bin (I_F = 200 mA, $T_{\rm S}$ = 25 °C)

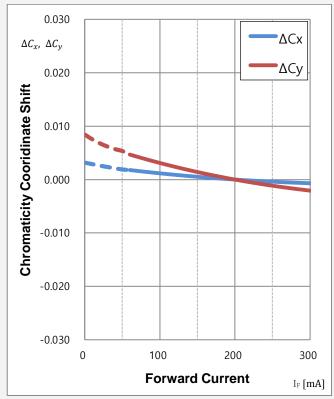

		Flux Range (lm)										
Symbol	Flux Bin	8	8A		1 B		2B		В	4B		
Зуппон	Code	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
		80	88	84	93	88	97	93	102	97	107	
	R2			()	()	()	()	
Φ_{V}	S2	О		0		О		Ο		0		
	T2	()	0		О		(O			

3. Typical Characteristics Graphs

a) Spectrum Distribution ($I_F = 200$ mA, $T_S = 25$ °C)

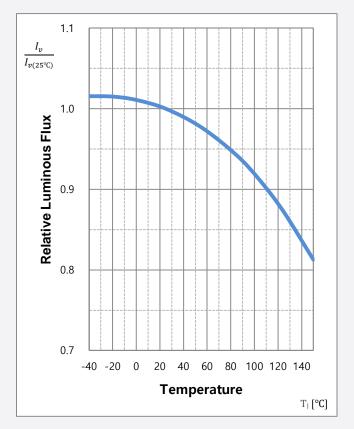

b) Typical Chromaticity Coordinate Shift vs Radiation Angle ($I_F = 200\,$ mA, $T_S = 25\,$ °C) [7]

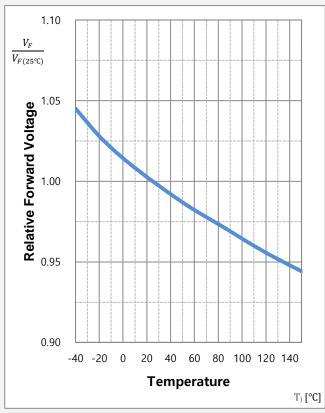


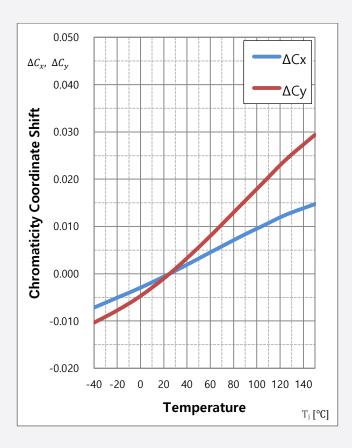

Note:

[7] The measurement condition means that temperature dependence is excluded by applying pulse current for typically 25 ms

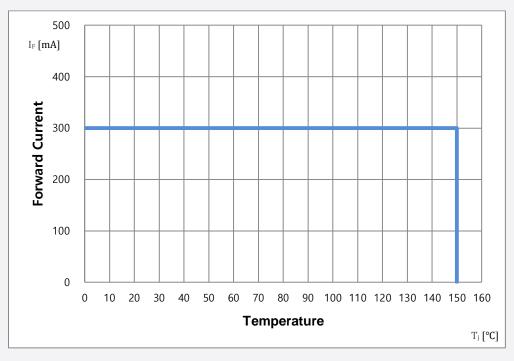
c) Forward Current Characteristics (T_S = 25 °C)^[8]

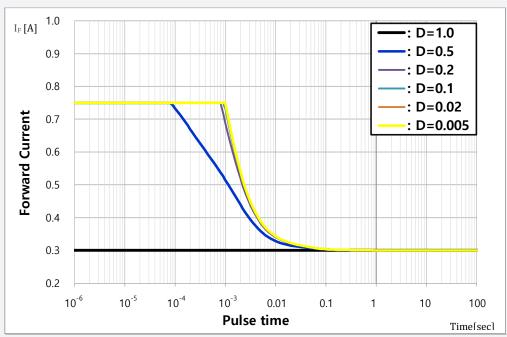


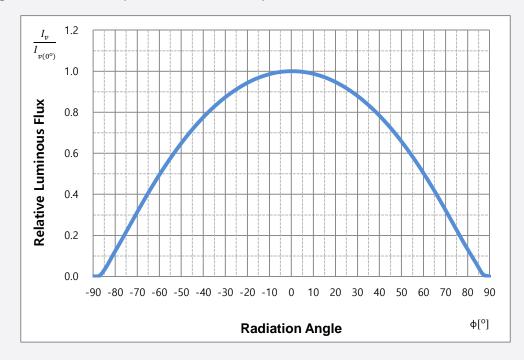



Note:

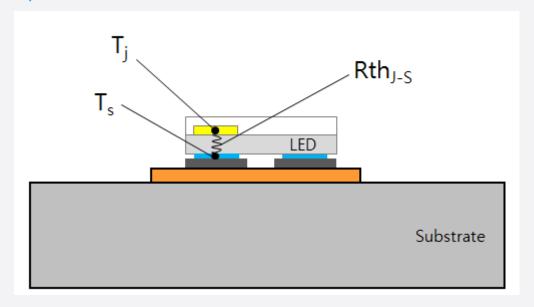
[8] The measurement condition means that temperature dependence is excluded by applying pulse current for typically 25 ms


d) Temperature Characteristics ($I_F = 200 \text{ mA}$)


e) Derating Curve [9]

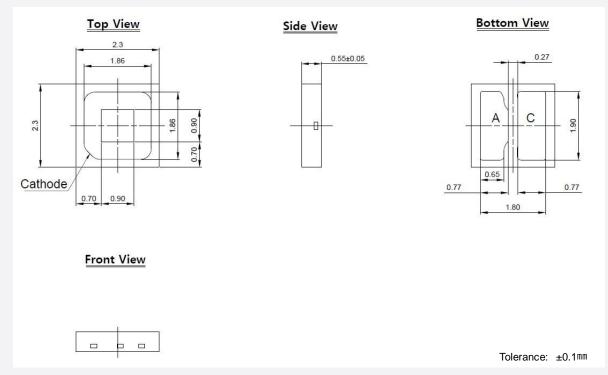

Note:

[9] The measurement condition means that temperature dependence is excluded by applying pulse current for typically 25 ms


f) Permissible Pulse Handling Capability ($I_F = f(t_p)$; D: Duty cycle, $T_S = 125$ °C)

g) Beam Angle Characteristics (I_F = 200 mA, T_S = 25 °C)

4. Soldering Temperature Location



 T_j : Temperature of Junction

 T_s : Temperature of Solder Pad

 $\mathsf{Rth}_{j\text{-s}}$: Thermal Resistance from Junction to Solder Pad

5. Mechanical Dimension

Note:

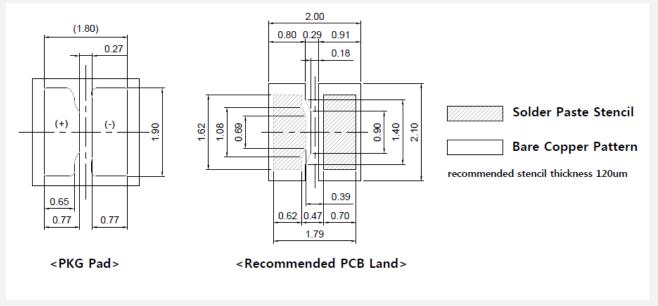
Approximate weight: 10.5mg.

Unit: mm

a) Pick and Place

Do not place pressure on the resin molded part It is recommended to use a pick & place nozzle CNT 3X5, etc.

b) Electric Schematic Diagram

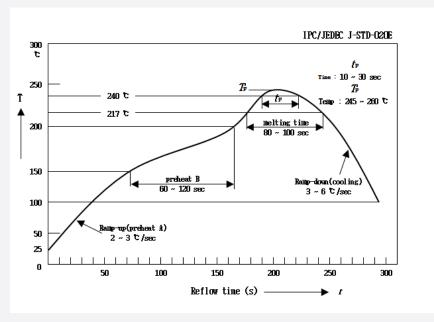


c) Material Information

Description	Material		
Substrate	SMC Cu Lead Frame		
LED Die	GaN		
Phosphor	Silicone		
Zener Diode	Silicon		
Wire	Au		
Resin Mold	Silicone		

6. Soldering Conditions

a) Pad Configuration & Sold Pad Layout

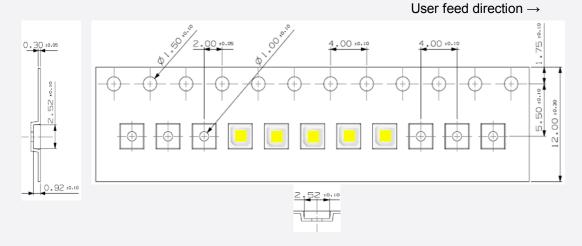


Notes:

Unit: mm, Tolerance: ± 0.10 mm, recommended stencil thickness 120 μm

b) Reflow Conditions (Pb free)

Reflow frequency: 2 times max.

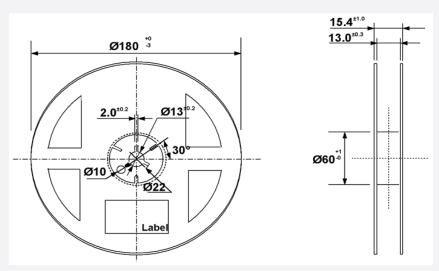


c) Manual Soldering Conditions

Not more than 5 seconds @ max. 300 $^{\circ}$ C, under soldering iron.(one time only)

7. Tape & Reel

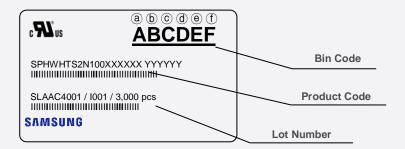
a) Taping Dimension



Notes:

Unit: mm, LED taping quantity: 3,000EA / Reel

b) Reel Dimension



Notes:

Unit: mm, Tolerance: ±0.20 mm

8. Label Structure

a) Label Structure

Note: Denoted bin code and product code above is only an example (see description on page 5,6)

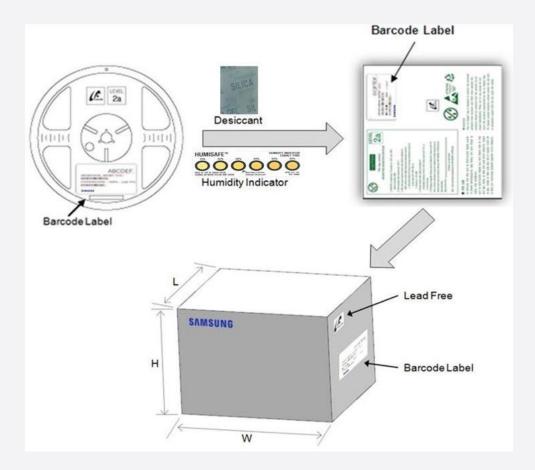
Bin Code:

(a) (refer to page 5)

©d: Chromaticity bin (refer to page 6)

ef: Luminous Flux bin (refer to page 5)

b) Lot Number


The lot number is composed of the following characters:

12332	①23323456789 / Iabc / 3,000 pcs								
12	: Production site								
3	: Product state (A: Normal, B: Bulk, C: First Production, R: Reproduction, S: Sample)								
4	: Year (D: 2019, E: 2020, F: 2021)								
5	: Month (1~9, A, B, C)								
6	: Day (1~9, A, B~V)								
789	: Serial number (001 ~ 999)								
(a)(b)(c)	: Product serial number (001 ~ 999)								

9. Packing Structure

a) Packing Process

Dimension of Transportation Box in mm

Width	Length	Height		
220	245	182		

10. Handling and use precautions

- 1) For over-current protection, we recommend the use of resistors to prevent sudden current surges caused by slight shifts in voltage.
- 2) LEDs should not be contacted to any type of fluid (i.e. water, oil, organic solvent, etc.). If cleaning is required, only use isopropyl alcohol.
- 3) The maximum ambient temperature must be considered in order for the maximum temperature ratings not to be exceeded.
- 4) LEDs must be stored in a clean environment. If the LEDs are to be stored for 3 months or more after being shipped from Samsung Electronics, they should be packed by a sealed container with nitrogen gas injected.(Shelf life of sealed bags: 12 months, temp. ~40°C, ~90% RH)
- 5) After storage bag is open, LED subjected to soldering, solder reflow, or other high temperature processes must be:
 - a. Mounted within 672 hours (28 days) at an assembly line with a condition of no more than 30°C / 60% RH.
 - b. Stored at <10% RH.
- 6) Repack unused products using anti-moisture packing, fold to close any openings and store in a dry place with <10% RH
- 7) LEDs require baking before mounting, if humidity card reading is >60% at 23±5°C.
- 8) If baking is required, LEDs must be baked for 1 day at 60±5°C.
- 9) LEDs are sensitive to electrostatic discharge and surges. Applying any voltage exceeding the absolute maximum rating of the LED can cause permanent damage to the device. Damaged LEDs may have some unusual characteristics such as increased leakage current, lower turn-on voltage or may light abnormally at low current. When handling LEDs, using grounding wrist-bands or anti-static gloves is recommended.
- 10) VOCs (volatile organic compounds) present in adhesives, flux, hardeners or organic additives, etc. that are used in luminaires may lead to discoloration of the LED when exposed to heat or light. Note that VOCs can permeate silicone bags. This phenomenon can significantly affect light output from the luminaire. To avoid this issue, please carefully evaluate materials used in your process and/or luminaire to be free of VOCs.
- 11) To avoid risk of sulfurization (or tarnishing), do not use or store LEDs near materials containing sulfur, fluorine, chlorine, bromine, iodine or other halogens or compounds that can potentially react with the LED's silver plated lead frame. Examples of these materials include: various rubbers, paper products, certain solder pastes, cleaning solutions, adhesives, etc. or may be present in certain environments in form of fertilizers, lubricants, etc. This reaction can result into the lead frame darkening when exposed to such compounds, resulting in degradation of intensity, change in forward voltage, chromaticity coordinate shift and it may go as far as becoming an open circuit in more extreme cases.

SAMSUNG

SAMSUNG

Copyright @1995-2020 All rights reserved Samsung Electronics LED BUSINESS

1, Samsung-ro Giheung-gu Yongin-si, Gyeonggi-do 17113 Korea

http://www.samsung.com/led Sales Contact:cpim@samsung.com

US

Samsung Semiconductor, Inc. 11800 Amber park Drive #225 Alpharetta, GA 30004 USA

Tel: +1 678 892 7385

Europe

Samsung Semiconductor Europe GmbH Oskar-Messter-Strasse 29, 85737 Ismaning, Germany

Tel: +49 6196 66 3902

Japan

Samsung Japan Corporation

10F, Shinagawa Grand Central Tower 2-16-4, Kounan, Minato-ku, Tokyo

108-8240, Japan Tel: +81 3 6369 6262

China(Shenzhen)

Samsung Electronics Co., Ltd. 25F/26F, SCC building A, No.88, Haide Yi Road, Nanshan District, 518026, Shenzhen China

Tel: +86 755 8608 5674

China(Shanghai)

Samsung Electronics Co., Ltd.
Building B, No 1065 Zhongshan RD(W), Changning District, Shanghai,
China

Tel: +86 21 2325 3504

India

Samsung Electonics Suite #006 Ground Floor, Copia Corporate Suites, Jasola, New Delhi 110025, India, Delhi, IND

Tel: +91 9600003320

Legal and additional information.

About Samsung Electronics Co., Ltd.

Samsung inspires the world and shapes the future with transformative ideas and technologies. The company is redefining the worlds of TVs, smartphones, wearable devices, tablets, digital appliances, network systems, and memory, system LSI, foundry and LED solutions. For the latest news, please visit the Samsung Newsroom at news.samsung.com.

Copyright © 2019 Samsung Electronics Co., Ltd. All rights reserved.

Samsung is a registered trademark of Samsung Electronics Co., Ltd.

Specifications and designs are subject to change without notice. Non-metric weights and measurements are approximate. All data were deemed correct at time of creation. Samsung is not liable for errors or omissions. All brand, product, service names and logos are trademarks and/or registered trademarks of their respective owners and are hereby recognized and acknowledged.

Samsung Electronics Co., Ltd. 95, Samsung 2-ro Giheung-gu Yongin-si, Gyeonggi-do, 446-711 KOREA

www.samsung.com/led

