

MODEL NO :	TM070RDH10				
MODEL VERSION:	47				
SPEC VERSION:	2.5				
ISSUED DATE:	2020-03-24				
	Specification ct Specification				

Customer :_

Approved by		Notes
	, (

TIANMA Confirmed:

Prepared by	Checked by	Approved by
Mingxu.Xiao	Guangkun.An	XiaoXing.Ding

This technical specification is subjected to change without notice

Table of Contents

Tab	ole of Contents	2
Re	cord of Revision	3
1	General Specifications	4
2	Input/Output Terminals	5
3	Absolute Maximum Ratings	6
4	Electrical Characteristics	8
	Timing Chart	
6		
7	Environmental / Reliability Test	
8	Mechanical Drawing	19
9	Packing drawing	20
10	Precautions for Use of LCD Modules	

Record of Revision

Rev	Issued Date	Description	Editor
2.0	2013-12-27	Final Product Specification	Longping.deng
2.1	2015-11-25	Add temperature and relative humidity descriptions on page7.	Gang.li
2.2	2016-6-14	Update led life time	Longping.deng
2.3	2018-8-20	Update Packing drawing	Bin Wang
2.4	2019-1-10	Update IC Information	Bin Wang
		Page 4 Electrical Characteristics	•
2.5	2020-03-24	Page 7 Absolute Maximum Ratings update	Mingxu.Xiao
2.5	2020-03-24	Page10 Correct BLOCK DIAGRAM	IVIII Igxu. XIau
		Page18 Environmental / Reliability Test update	

1 General Specifications

	Feature	Spec	
	Size	7.0 inch	
	Resolution	800(RGB) x 480	
	Technology Type	a-Si TFT	
	Pixel Configuration	R.G.B. Vertical Stripe	
Display Spec.	Pixel pitch(mm)	0.1926 (H) x 0.179(V)	
	Display Mode	TM,NW	
	Surface Treatment	Anti Glare	
	Viewing Direction	12 o'clock	
	Gray Scale Inversion Direction	6 o'clock	
	LCM (W x H x D) (mm)	164.9x 100 x 5.7	
	Active Area(mm)	154.08 (W) x 85.92 (H)	
Mechanical	With /Without TSP	Without TSP	
Characteristics	Matching Connection Type	HIR OSE FH12A-50S-0.5H	
	LED Numbers	24 LEDS	
	Weight (g)	160g	
Electrical	Interface	RGB 24 bits	
Characteristics	Color Depth	16M	
Onaracteristics	Driver IC	HX8264D+ HX8664B	

Note 1: Viewing direction for best image quality is different from TFT definition. There is a 180 degree shift.

Note 2: Requirements on Environmental Protection: Q/S0002

Note 3: LCM weight tolerance: +/- 5%

2 Input/Output Terminals

2.1 CN1 of FPC

Mating connector type: HIROSE FH12A-50S-0.5H

PIN	Symbol	I/O	Description	Remark
1	VLED+	Р	Led anode	
2	VLED+	Ρ	Led anode	
3	VLED-	Р	Led cathode	
4	VLED-	Р	Led cathode	
5	GND	Ρ	Ground	
6	NC		No Connection	
7	VCC	Р	Digital power supply	· ·
8	MODE	1	DE/SYNC mode select. H:DE mode, L:SYNC mode	
9	DE	Ι	Data enable signal, active high to enable data, if not used, please pull low	
10	VSYNC	1	Vertical sync input, negative polarity,if not used,please pull High	
11	HSYNC	I	Horizontal sync input, negative polarity,if not used,please pull High	
12	B7	1	Blue data (MSB)	
13	B6		Blue data	
14	B5		Blue data	
15	B4		Blue data	
16	B3		Blue data	
17	B2	ı	Blue data	
18	B1		Blue data	
19	B0		Blue data (LSB)	
20	G7	1	Green data (MSB)	
21	G6		Green data	
22	G5		Green data	
23	G4		Green data	
24	G3		Green data	
25	G2		Green data	
26	G1	ı	Green data	
27	G0		Green data (LSB)	
28	R7		Red data (MSB)	
29	R6		Red data	
30	R5		Red data	
31	R4	Ī	Red data	
32	R3	I	Red data	
33	R2	I	Red data	
34	R1	l	Red data	
35	R0		Red data (LSB)	
36	GND	Ρ	Ground	

Model No:TM070RDH10

37	DCLK	ı	Clock for input data, latching data at falling edge
38	GND	Р	Ground
39	LR	I	Source left or right sequence control
40	UD	1	Gate up or down scan control
41	VGH	Р	Positive power of TFT
42	VGL	Р	Negative power of TFT
43	AVDD	Р	Analog power supply
44	RESET	ı	Global reset pin
45	NC	-	No Connection
46	NC	-	No Connection
47	DITHB	ı	Dithering setting. H: 6bit resolution, L: 8bit resolution
48	GND	Р	Ground
49	NC	-	No Connection
50	NC	-	No Connection

I---Input, O---Output, P--- Power/Ground

Table 2.1 terminal pin assignments

2.2 U/D R/L Function Description

Scan cont	rol input	Scanning direction
UD	LR	Scanning unection
GND	VCC	Up to down, left to right
VCC	GND	Down to up, right to left
GND	GND	Up to down, right to left
VCC	VCC	Down to up, left to right

3 Absolute Maximum Ratings

Ta = 25°C

Item	Symbol	MIN	MAX	Unit	Remark
	VCC	-0.50	3.95	V	
	AVDD	-0.50	14.85	V	
Power Voltage	VGH	-0.30	42.00	V	
	VGL	VGH-42	0.30	V	
	VGH-VGL	-0.30	40.00	V	
Signal Input Voltage	Vin	-0.50	VCC+0.3	V	Note1
Operating Temperature	Тор	-20.0	70.0	$^{\circ}$	
Storage Temperature	Tst	-30.0	80.0	$^{\circ}$	
			≤95	%	Ta≤40°C
Date of the college			≤85	%	40°C < Ta ≤ 50°C
Relative Humidity (Note2)	RH		≤55	%	50℃ <ta≤60℃< td=""></ta≤60℃<>
(13132)			≤36	%	60℃ <ta≤70℃< td=""></ta≤70℃<>
			≤24	%	70°C <ta≤80°c< td=""></ta≤80°c<>
Absolute Humidity	AH		≤70	g/m³	Ta>70℃

Table 3.1 absolute maximum rating

Note1: Input voltage include R0~R7, G0~G7, B0~B7, DCLK, HSYNC, VSYNC, DE, LR, UD, MODE, RESET, DITHB.

Note2: Ta means the ambient temperature.

It is necessary to limit the relative humidity to the specified temperature range. Condensation on the module is not allowed.

4 Electrical Characteristics

4.1 Recommended Operating Condition

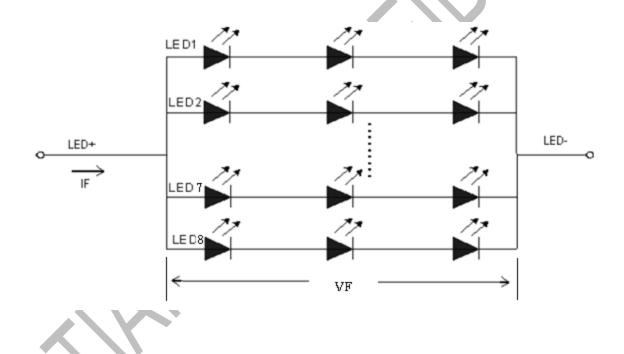
VCC=3.3V, GND=0V, Ta = 25° C

	100 0.017 0.12 017 14 20 0						
ltem		Symbol	MIN	TYP	MAX	Unit	Remark
Digital s Voltage	upply	VCC	3.0	3.30	3.60	٧	
Analog : Voltage	supply	AVDD	10.3	10.4	10.5	٧	
Gate on	voltage	VGH	14.4	16	17.6	V	
Gate off	voltage	VGL	-7.70	-7.00	-6.30	V	
Input	Low Level	V_{IL}	0	-	0.3xVCC	V	R0~R7,G0~G7,0~B7,DE, DCLK,HSYNC,VSYNC,MODE,
Signal Voltage	High Level	V _{IH}	0.7xVCC	-	VCC	V	RESET,LR,UD, DITHB
Current supply v	of digital oltage	l _{vcc}	-	-	10	mA	VCC=3.3V,blackpattern
Current supply v	of analog oltage	I _{AVDD}	-	-	30	mA	AVDD=10.4V,blackpattern
Current of Gate on voltage		$I_{ m VGH}$	-	-	0.3	mA	VGH=16.0V,blackpattern
Current off voltag		I_{VGL}	-	1	0.3	mA	VGL=-7.0V,blackpattern

Table 4.1 LCD module electrical characteristics

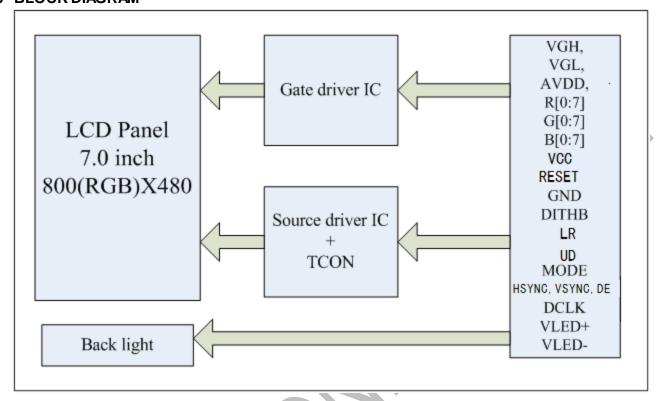
Note 1: It is necessary to keep the input voltage within the suggested range.

4.2 Backlight Unit Driving Condition


ltem	Symbol	MIN	TYP	MAX	Unit	Remark
Forward Current	l _F	-	160.0	200	mA	24 LEDs
Forward Current Voltage	V_{F}	9	9.6	10.8	V	(3 LED Serial, 8
Backlight Power Consumption	W _{BL}	-	1536	2160	mW	LED Parallel)
Operating Life Time		20000	30000		hrs	Note 2, Note 3

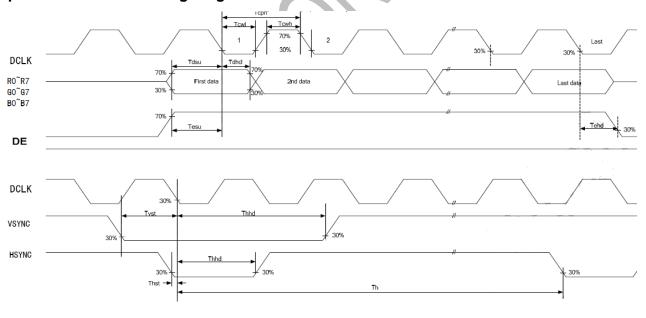
Note1: The LED driving condition is defined for each LED module (3 LED Serial, 8 LED Parallel).

Note2: Under LCM operating, the stable forward current should be inputted. And forward voltage is for reference only.


Note3: Optical performance should be evaluated at Ta= 25° C only If LED is driven by high current, high ambient temperature & humidity condition. The life time of LED will be reduced. Operating life means brightness goes down to 50% initial brightness. Typical operating life time is estimated data.

Note4: The LED driving condition is defined for each LED module.

4.3 BLOCK DIAGRAM


5 Timing Chart

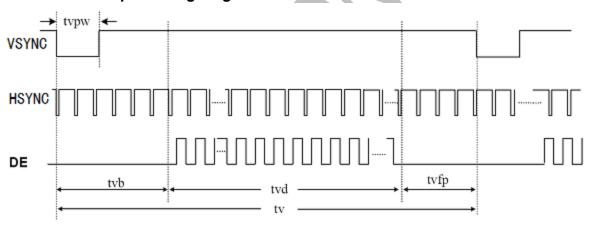
5.1 TFT-LCD Input Timing

VCC=3.3V. GND=0V. Ta=25°C

	V66-6.6V, G18-6V, 14-26 6							
Parameter	Symbol	Min	Тур	Max	Unit	Remark		
DCLK frequency	Fclk	28	30.0	40.0	MHz			
DCLK cycle time	Tcph	25	33.3	36	ns			
DCLK pulse width	Tcw	40%	50%	60%	T _{cph}			
VSYNC setup time	Tvst	8			ns			
VSYNC hold time	Tvhd	8	-	1	ns			
HSYNC setup time	Thst	8			ns			
HSYNC hold time	Thhd	8	-	ı	ns			
Data setup time	Tdsu	8			ns	Data to DCLK		
Data hold time	Tdhd	8	-	-	ns	Data to DCLK		
DE setup time	Tesu	8	-		ns			
DE hold time	Tehd	8	-	-	ns			

Input Clock and Data timing Diagram:

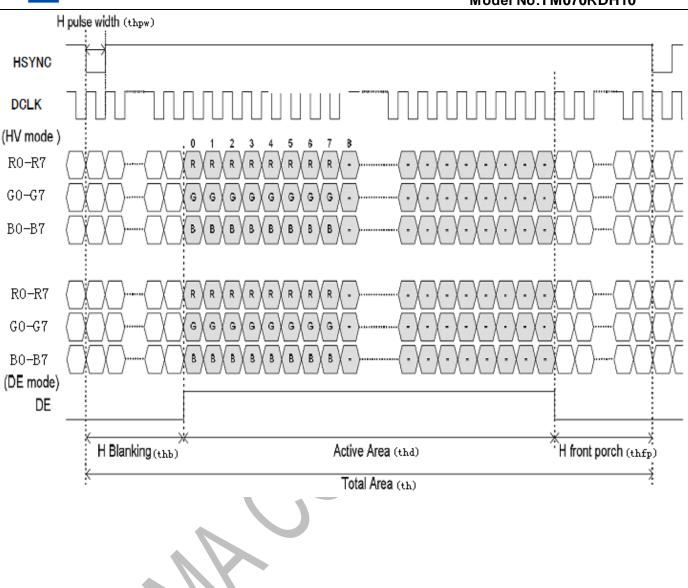
5.2 Recommended Timing Setting Of TCON

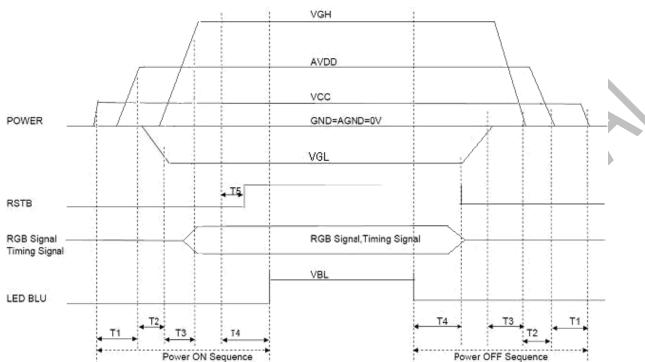

TCON (Embedded In Source IC) Input Timing (DCLK, HSYNC, VSYNC, DE)

VCC=3.3V, GND=0V, Ta=25°C

Parameter	Symbol	Min	Тур	Max	Unit	Remark
DCLK	Fclk	28	30	40	MHZ	
DCLK	Tclk	20	33.3	36	ns	
	th	862	1056	1200	tclk	
]	thd	800	800	800	tclk	
HSD	thpw	1	-	40	tclk	
	thb	46	46	46	tclk	
	thfp	16	210	354	tclk	
	tv	513	525	650	th	
	tvd	480	480	480	th	
VSD	tvpw	1	3	20	th	
	tvb	23	23	23	th	
	tvfp	7	22	147	th	

Note 1: DE timing refer to HSYNC, VSYNC input timing.


TCON Vertical Input Timing Diagram HV


TCON Horizontal Input Timing Diagram

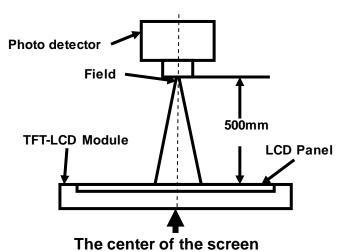
5.3 POWER ON/OFF SEQUENCE

Note 1: T1≥20ms, T2≥0ms, T3≥5ms, T4≥100ms, T5>1ms

6 Optical Characteristics

Ta=25°C

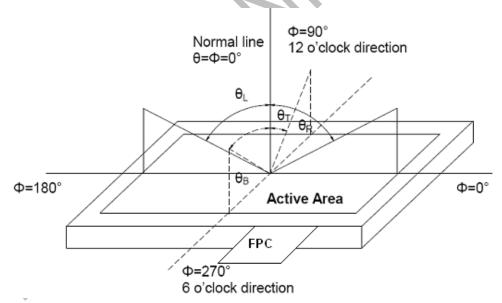
Item		Symbol	Condition	Min	Тур	Max	Unit	Remark
View Angeles		θТ	00 > 40	50	60	-	D	Nata O
		θВ		60	80	-		
View Angles		θL	CR≧10	60	80	-	Degree	Note 2
		θR		60	80	-		
Contrast Ratio		CR	θ=0°	600	800	-		Note1 Note3
		T _{ON}						, v
Response Time		T _{OFF}	25 ℃	-	15		ms	Note1 Note4
) A / I · /	х	Backlight is on	0.269	0.319	0.369	-	Note1 Note5
	White	у		0.295	0.345	0.395		
	Red	Х		0.539	0.589	0.639		
Ob		у		0.303	0.353	0.403		
Chromaticity	Green	х		0.295	0.345	0.395		
		у		0.545	0.595	0.645		
	Blue	х		0.100	0.150	0.200		
	blue	у		0.047	0.097	0.147		
Uniformity		U)	75	85	ı	%	Note1 Note6
NTSC		N		45	50	-	%	Note 5
Luminance (Without TP)		L		400	450	-	cd/m ²	Note1 Note7


Test Conditions:

- 1. I_F = 160 mA, V_F =9.6 V and the ambient temperature is 25±2°C .humidity is 65±7%
- 2. The test systems refer to Note 1 and Note 2.

Note 1: Definition of optical measurement system.

The optical characteristics should be measured in dark room. After 5 Minutes operation, the optical properties are measured at the center point of the LCD screen. All input terminals LCD panel must be ground when measuring the center area of the panel.



ltem	Photo detector	Field
Contrast Ratio		
Luminance	SR-3AR	1°
Chromaticity	SK-SAK	
Lum Uniformity		
Response Time	LCD-5200	

Note

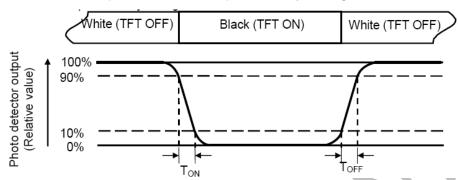
2: Definition of viewing angle range and measurement system.

viewing angle is measured at the center point of the LCD by CONOSCOPE(ergo-80).

Note 3: Definition of contrast ratio

 $\mbox{Contrast ratio (CR)} = \frac{\mbox{Luminance measured when LCD is on the "White" state}}{\mbox{Luminance measured when LCD is on the "Black" state}}$

"White state ": The state is that the LCD should drive by Vwhite.

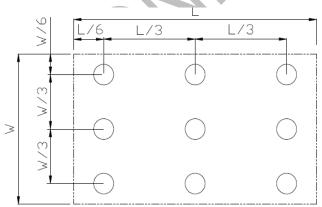

"Black state": The state is that the LCD should drive by Vblack.

Vwhite: To be determined Vblack: To be determined.

Note 4: Definition of Response time

The response time is defined as the LCD optical switching time interval between "White" state and "Black" state. Rise time (T_{ON}) is the time between photo detector output intensity changed from 90% to 10%. And fall time (T_{OFF}) is the time between photo detector output intensity changed from 10% to 90%.

Note 5: Definition of color chromaticity (CIE1931)


Color coordinates measured at center point of LCD.

Note 6: Definition of Luminance Uniformity

Active area is divided into 9 measuring areas (Refer Fig. 2). Every measuring point is placed at the center of each measuring area.

Luminance Uniformity (U) = Lmin/Lmax

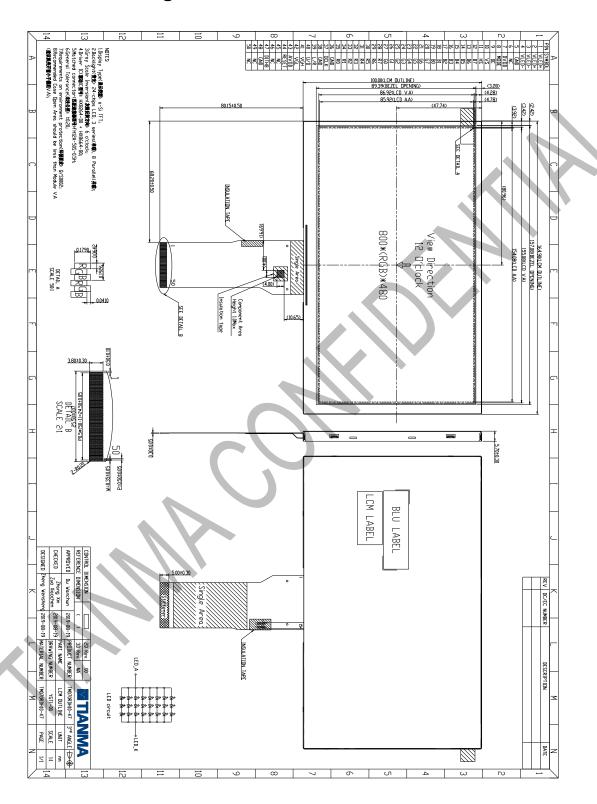
L-----Active area length W----- Active area width

Lmax: The measured Maximum luminance of all measurement position.

Lmin: The measured Minimum luminance of all measurement position.

Note 7: Definition of Luminance:

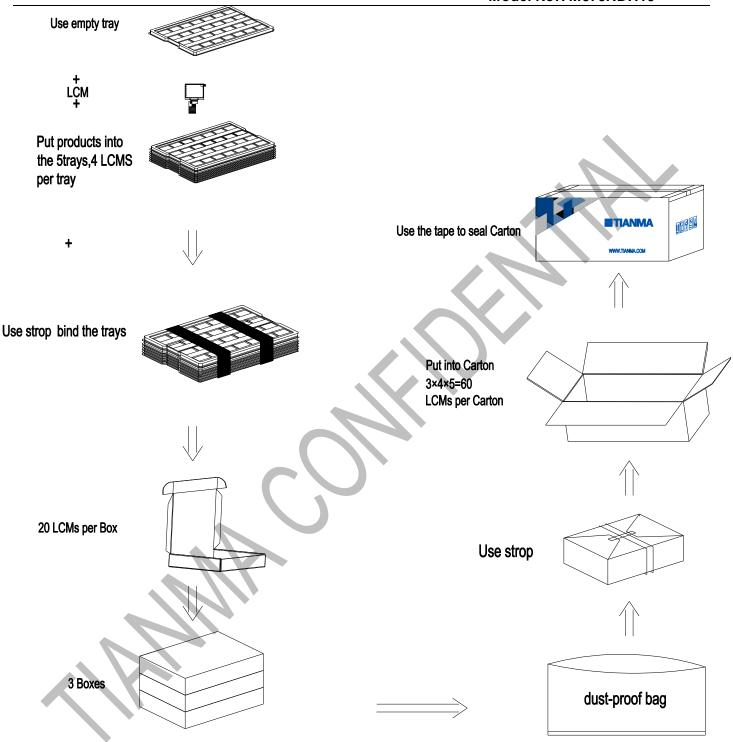
Measure the luminance of white state at center point.


7 Environmental/Reliability Test

No	Test Item	Condition	Remarks		
1	High Temperature Operation	Ta = +70°C, 240 hours	IEC60068-2-2 GB2423.2		
2	Low Temperature Operation	Ta = -20℃, 240 hours	IEC60068-2-1 GB2423.1		
3	High Temperature Storage	Ta = +80°C, 240 hours	IEC60068-2-2 GB2423.2		
4	Low Temperature Storage	Ta = -30℃, 240 hours	IEC60068-2-1 GB2423.1		
5	Storage at High Temperature and Humidity	Ta = +60℃, 90% RH max,240hours	IEC60068-2-78 GB/T2423.3		
6	Thermal Shock (non-operation)	-30°C 30 min~+80°C 30 min, Change time:5min, 100 Cycle	Start with cold temperature, End with high temperature, IEC60068-2-14,GB2423.22		
7	ESD	C=150pF,R=330Ω,5point/panel Air:±8Kv,5times; Contact:±4Kv,5times (Environment:15°C~35°C, 30%~60%.86Kpa~106Kpa)	IEC61000-4-2 GB/T17626.2		
8	Vibration Test	Frequency range:10~55Hz Stroke:1.5mm Sweep:10Hz~55Hz~10Hz 2 hours for each direction of X.Y.Z. (6 hours for total)	IEC60068-2-6 GB/T2423.10		
9	Mechanical Shock (Non Op)	Half Sine Wave 100G 6ms, ±X,±Y,±Z 3times for each direction	IEC60068-2-27 GB/T2423.5		
10	Package Drop Test	Height:60cm, 1corner,3edges,6surfaces	GB/T 4857.5-1992		

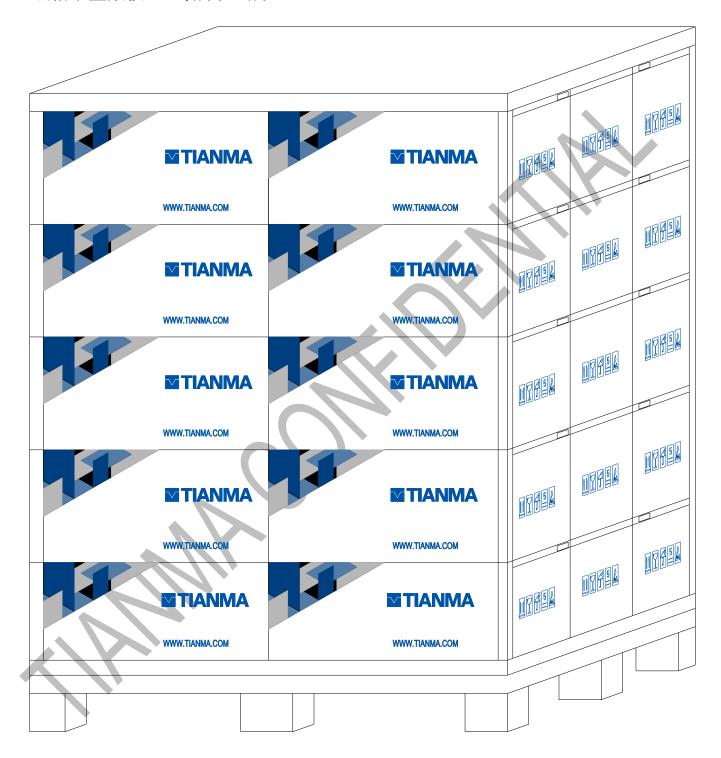
Note1: Ta is the ambient temperature of samples.

8 Mechanical Drawing



9 Packing drawing

Per Carton


No	ltem	Model (Material)	Dimensions(mm)	Unit Weight(Kg)	Quantity	Remark		
1	LCM module	TM070RDH10-40	164.90×100.00×5.70	TBD	60			
2	Tray	PET	485×330×17	0.22	18	Anti-static		
3	Dust-proof Bag	PE	700×545×0.05	0.021	1			
4	Carton	Corrugated Paper	544×365×250	1.01	1			
5	вох	Corrugated Paper	520×345×74	0.227	3			
6	Label		100×52	0.002	1			
7	Total weight	14.2 Kg±0.5%						

纸箱堆叠数按2*3每层*共5层

10 Precautions for Use of LCD Modules

10.1 Handling Precautions

- 10.1.1 The display panel is made of glass. Do not subject it to a mechanical shock by dropping it from a high place, etc.
- 10.1.2 If the display panel is damaged and the liquid crystal substance inside it leaks out, be sure not to get any in your mouth, if the substance comes into contact with your skin or clothes, promptly wash it off using soap and water.
- 10.1.3 Do not apply excessive force to the display surface or the adjoining areas since this may cause the color tone to vary.
- 10.1.4 The polarizer covering the display surface of the LCD module is soft and easily scratched. Handle this polarizer carefully.
- 10.1.5 If the display surface is contaMinated, breathe on the surface and gently wipe it with a soft dry cloth. If still not completely clear, moisten cloth with one of the following solvents:
 - Isopropyl alcohol
 - Ethyl alcohol

Solvents other than those mentioned above may damage the polarizer. Especially, do not use the following:

- Water Ketone Aromatic solvents
- 10.1.6 Do not attempt to disassemble the LCD Module.
- 10.1.7 If the logic circuit power is off, do not apply the input signals.
- 10.1.8 To prevent destruction of the elements by static electricity, be careful to maintain an optimum work environment.
 - 10.1.8.1 Be sure to ground the body when handling the LCD Modules.
 - 10.1.8.2 Tools required for assembly, such as soldering irons, must be properly ground.
- 10.1.8.3 To reduce the amount of static electricity generated, do not conduct assembly and other work under dry conditions.
- 10.1.8.4 The LCD Module is coated with a film to protect the display surface. Be care when peeling off this protective film since static electricity may be generated.

10.2 Storage precautions

- 10.2.1 When storing the LCD modules, avoid exposure to direct sunlight or to the light of fluorescent lamps.
- 10.2.2 The LCD modules should be stored under the storage temperature range. If the LCD modules will be stored for a long time, the recommend condition is:

Temperature : 0°C ~ 40°C Relatively humidity: ≤80%

10.2.3 The LCD modules should be stored in the room without acid, alkali and harmful gas.

10.3 Transportation Precautions

10.3.1 The LCD modules should be no falling and violent shocking during transportation, and also should avoid excessive press, water, damp and sunshine.