OPTIREG ${ }^{\text {TM }}$ Linear TLS835D2ELVSE

Low Dropout Linear Voltage Regulator

(1 RoHS

Features

- Wide input voltage range from 3.0 V to 40 V
- Selectable output voltage 5 V or 3.3 V
- Output voltage precision $\leq \pm 2 \%$
- Output current capability up to 350 mA
- Ultra low current consumption, typical $20 \mu \mathrm{~A}$

- Very low dropout voltage, typical 100 mV , at output currents below 100 mA
- Stable with ceramic output capacitor of $1 \mu \mathrm{~F}$
- Enable
- Reset
- Adjustable reset threshold down to 2 V
- Overtemperature shutdown
- Output current limitation
- Wide temperature range
- Green Product (RoHS compliant)

Potential applications

- Automotive or other supply systems that are connected to the battery permanently
- Automotive supply systems that need to operate in cranking condition

Product validation

Qualified for automotive applications. Product validation according to AEC-Q100/101.

Description

The OPTIREG ${ }^{\text {TM }}$ Linear TLS835D2ELVSE is a linear voltage regulator with high performance, very low dropout linear voltage and very low quiescent current.
With an input voltage range of 3 V to 40 V and very low quiescent current of only $20 \mu \mathrm{~A}$, this regulator is perfectly suitable for automotive or other supply systems permanently connected to the battery.
The new loop concept combines fast regulation and very high stability while requiring only one small ceramic capacitor of $1 \mu \mathrm{~F}$ at the output. At output currents below 100 mA the device has a very low dropout voltage of only 100 mV (for an output voltage of 5 V) and 120 mV (for an output voltage of 3.3 V). The operating range starts at an input voltage of only 3 V (extended operating range). This makes the TLS835D2ELVSE suitable for automotive systems that need to operate during cranking condition.

The device can be switched on and off by the enable feature.
The output voltage of the TLS835D2ELVSE can be selected between 5 V and 3.3 V by connecting the SEL pin to either V_{Q} or GND. When the SEL pin is connected to V_{Q}, the regulator's output is set to 5 V ; when the SEL pin is connected to GND, the regulator's output is set to 3.3 V .
The output voltage is supervised by the reset feature, which includes an undervoltage reset, a delayed reset at power-on and an adjustable lower reset threshold.

Internal protection features such as output current limitation and overtemperature shutdown, protect the device from immediate damage caused by failures such as output shorted to GND, overcurrent or overtemperature conditions.

External components

An input capacitor C_{1} is recommended to compensate for line influences. The output capacitor C_{Q} is necessary for the stability of the regulating circuit. The TLS835D2ELVSE is designed to be stable with low ESR ceramic capacitors.

Type	Package	Marking
TLS835D2ELVSE	PG-SSOP-14	835D2VSE

Table of contents

Features 1
Potential applications 1
Product validation 1
Description 1
Table of contents 3
1 Block diagram 4
2 Pin configuration 5
2.1 Pin assignment TLS835D2ELVSE 5
2.2 Pin definitions and functions TLS835D2ELVSE 5
3 General product characteristics 7
3.1 Absolute maximum ratings 7
3.2 Functional range 8
3.3 Thermal resistance 9
4 Block description and electrical characteristics 10
4.1 Voltage regulation 10
4.2 Typical performance characteristics voltage regulator 14
4.3 Current consumption 18
4.4 Typical performance characteristics current consumption 19
4.5 Enable 20
4.6 Typical performance characteristics enable 21
4.7 Output voltage selection 22
4.8 Reset function 22
4.9 Typical performance characteristics Reset 27
5 Application information 28
5.1 Application diagram 28
5.2 Selection of external components 28
5.2.1 Input pin 28
5.2.2 Output pin 28
5.3 Thermal considerations 29
5.4 Reverse polarity protection 29
5.5 Further application information 29
6 Package information 30
7 Revision history 31

Low Dropout Linear Voltage Regulator
Block diagram

1 Block diagram

Figure 1 Block diagram TLS835D2ELVSE

Low Dropout Linear Voltage Regulator
Pin configuration

2 Pin configuration

2.1 Pin assignment TLS835D2ELVSE

Figure 2 Pin configuration TLS835D2ELVSE

2.2 Pin definitions and functions TLS835D2ELVSE

Pin	Symbol	Function
1	I	Input It is recommended to place a small ceramic capacitor to GND, close to the pins, to compensate for line influences
2	n. c.	Not connected Leave open or connect to GND
3	n. c.	Not connected Leave open or connect to GND
4	EN	Enable (integrated pull-down resistor) Enable the IC with high level input signal Disable the IC with low level input signal
5	n. c.	Not connected Leave open or connect to GND
6	GND	Not connected Leave open or connect to GND
7	D	Ground
8	n. c.	Reset delay timing Connect a ceramic capacitor to GND for adjusting the reset delay time Leave open if the reset function is not needed
9	RO	Not connected Leave open or connect to GND
10	Reset output (integrated pull-up resistor to Q) Open collector output Leave open if the reset function is not needed	

Pin configuration

Pin	Symbol	Function
11	RADJ	Reset threshold adjustment Connect to GND to use standard value Connect an external voltage divider to adjust reset threshold
12	SEL	Output voltage selection Connect to Q to select 5 V output voltage Connect to GND to select 3.3 V output voltage
13	n. C.	Not connected Leave open or connect to GND
14	Q	Output voltage Connect output capacitor C_{Q} to GND close to the pin, respecting the values specified for its capacitance and ESR in "Functional range" on Page 8
Pad	-	Exposed pad Connect to heatsink area; Connect to GND

General product characteristics

3 General product characteristics

3.1 Absolute maximum ratings

Table 1 Absolute maximum ratings ${ }^{1)}$
$T_{\mathrm{j}}=-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$; all voltages with respect to ground (unless otherwise specified)

Parameter	Symbol	Values			Unit	Note or Test Condition	Number
		Min.	Typ.	Max.			
Input I, enable EN							
Voltage	$V_{1}, V_{E N}$	-0.3	-	45	V	-	P_4.1.1

Output Q, reset output RO

Voltage	$V_{\mathrm{Q}}, V_{\mathrm{RO}}$	-0.3	-	7	V	-	P_4.1.2

Select SEL

voltage	$V_{\text {SEL }}$	-0.3	-	7	V	-	P_4.1.3

Reset delay D, reset adjust RADJ

Voltage	$V_{D}, V_{\text {RADJ }}$	-0.3	-	7	V	-	P_4.1.4

Temperatures

Junction temperature	T_{j}	-40	-	150	${ }^{\circ} \mathrm{C}$	-	P_4.1.5
Storage temperature	$T_{\text {stg }}$	-55	-	150	${ }^{\circ} \mathrm{C}$	-	

ESD absorption

ESD susceptibility to GND	$V_{\text {ESD }}$	-2	-	2	kV	${ }^{2)}$ HBM	P_4.1.7
ESD susceptibility to GND	$V_{\text {ESD }}$	-750	-	750	V	${ }^{3)}$ CDM at all pins	P_4.1.8

1) Not subject to production test, specified by design.
2) ESD susceptibility, HBM according to ANSI/ESDA/JEDEC JS001 ($1.5 \mathrm{k} \Omega, 100 \mathrm{pF}$)
3) ESD susceptibility, Charged Device Model "CDM" according JEDEC JESD22-C101

Notes

1. Exceeding the absolute max ratings may cause permanent damage to the device and affects the device's reliability.
2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as operation outside the normal operating range. Protection functions are not designed for continuous repetitive operation.

Low Dropout Linear Voltage Regulator

General product characteristics

3.2 Functional range

Table 2 Functional range

$T_{\mathrm{j}}=-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$; all voltages with respect to ground (unless otherwise specified)

Parameter	Symbol	Values			Unit	Note or Test Condition	Number
		Min.	Typ.	Max.			
Input voltage range	v_{1}	$V_{\mathrm{Q}, \text { nom }}+V_{\text {dr }}$	-	40	V	${ }^{1)}$ -	P_4.2.1
Extended input voltage range	$V_{1, \text { ext }}$	3.0	-	40	V	${ }^{2)}$ -	P_4.2.2
Enable voltage range	$V_{\text {EN }}$	0	-	40	V	-	P_4.2.3
Capacitance of output capacitor for stability	C_{Q}	1	-	-	$\mu \mathrm{F}$	${ }^{314)}$ -	P_4.2.4
Equivalent series resistance of output capacitor	$E S R\left(C_{Q}\right)$	-	-	50	Ω	${ }^{3)}$ -	P_4.2.5
Junction temperature	T_{j}	-40	-	150	${ }^{\circ} \mathrm{C}$	-	P_4.2.6

1) Output current is limited internally and depends on the input voltage, see electrical characteristics for more details.
2) If $V_{1, \text { ext,min }} \leq V_{1} \leq V_{Q, \text { nom }}+V_{d r}$, then $V_{Q}=V_{1}-V_{d r}$. If $V_{1}<V_{1, \text { ext,min }}$, then V_{Q} can drop to 0 V .
3) Not subject to production test, specified by design.
4) The minimum output capacitance requirement is applicable for a worst case capacitance tolerance of 30%

Note: Within the functional or operating range, the IC operates as described in the circuit description. The electrical characteristics are specified within the conditions given in the electrical characteristics table.

General product characteristics

$3.3 \quad$ Thermal resistance

Note: This thermal data was generated in accordance with JEDEC JESD51 standards. For more information, go to www.jedec.org.

Table 3 Thermal resistance of TLS835D2ELVSE in PG-SSOP-14 package

Parameter	Symbol	Values			Unit	Note or Test Condition	Number
		Min.	Typ.	Max.			
Junction to case	$R_{\text {thJc }}$	-	10	-	K/W	${ }^{1)}$ -	P_4.3.1
Junction to ambient	$R_{\text {thJA }}$	-	41	-	K/W	${ }^{12)} 2 \mathrm{~s} 2 \mathrm{p}$ board	P_4.3.2
Junction to ambient	$R_{\text {thJA }}$	-	125	-	K/W	${ }^{1 / 3)} 1 \mathrm{sop}$ board, footprint only	P_4.3.3
Junction to ambient	$R_{\text {thJA }}$	-	59	-	K/W	${ }^{1 / 3)} 1 \mathrm{sOp}$ board, $300 \mathrm{~mm}^{2}$ heatsink area on PCB	P_4.3.4
Junction to ambient	$R_{\text {thJA }}$	-	51	-	K/W	${ }^{1 / 3)} 1 \mathrm{sop}$ board, $600 \mathrm{~mm}^{2}$ heatsink area on PCB	P_4.3.5

1) Not subject to production test, specified by design
2) Specified $R_{\text {thJa }}$ value is according to Jedec JESD51-2,-5,-7 at natural convection on FR4 2 s 2 p board. The product (chip + package) was simulated on a $76.2 \times 114.3 \times 1.5 \mathrm{~mm}^{3}$ board with 2 inner copper layers ($2 \times 70 \mu \mathrm{~m} \mathrm{Cu}, 2 \times 35 \mu \mathrm{~m}$ Cu). Where applicable a thermal via array under the exposed pad contacted the first inner copper layer.
3) Specified $R_{\text {thJA }}$ value is according to JEDEC JESD $51-3$ at natural convection on FR4 1sOp board. The product (chip + package) was simulated on a $76.2 \times 114.3 \times 1.5 \mathrm{~mm}^{3}$ board with 1 copper layer $(1 \times 70 \mu \mathrm{mCu})$.

4 Block description and electrical characteristics

4.1 Voltage regulation

The output voltage V_{Q} is divided by a resistor network. This fractional voltage is compared to an internal voltage reference and the pass transistor is driven accordingly.
The control loop stability depends on the following factors:

- output capacitor C_{Q}
- load current
- chip temperature
- internal circuit design

Output capacitor

To ensure stable operation, the capacitance of the output capacitor and its equivalent series resistor (ESR) requirements as specified in "Functional range" on Page 8 must be maintained. The output capacitor must be sized according to the requirements of the application to be able to buffer load steps.

Input capacitors, reverse polarity protection diode

An input capacitor C_{1} is recommended to compensate for line influences.
In order to block influences such as pulses and high frequency distortion at the input, an additional reverse polarity protection diode and a combination of several capacitors for filtering should be used. Connect the capacitors close to the component's terminals.

Smooth ramp-up

In order to prevent overshoots during startup, a smooth ramp-up function is implemented. This ensures almost no output voltage overshoots during startup, mostly independent from load and output capacitance.

Output current limitation

If the load current exceeds the specified limit, due to a short-circuit for example, then the output current is limited and the output voltage decreases.

Overtemperature shutdown

The overtemperature shutdown circuit prevents the IC from immediate destruction in case of a fault condition (for example a permanent short-circuit at the output) by switching off the power stage. After the IC has cooled down, the regulator restarts. This leads to an oscillatory behavior of the output voltage until the fault is removed. However, any junction temperature above $150^{\circ} \mathrm{C}$ is outside the maximum ratings and therefore significantly reduces the lifetime of the IC.

Low Dropout Linear Voltage Regulator
Block description and electrical characteristics

Figure 3 Voltage regulation

Figure $4 \quad$ Output voltage vs. input voltage

Block description and electrical characteristics

Table 4 Electrical characteristics voltage regulator

$T_{\mathrm{j}}=-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}, V_{1}=13.5 \mathrm{~V}$, all voltages with respect to ground (unless otherwise specified)
Typical values are given at $T_{\mathrm{j}}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Values			Unit	Note or Test Condition	Number
		Min.	Typ.	Max.			
5 V output voltage							
Output voltage accuracy	$V_{\text {Q }}$	4.9	5.0	5.1	v	$\begin{aligned} & 0.05 \mathrm{~mA} \leq I_{\mathrm{Q}} \leq 350 \mathrm{~mA} \\ & 5.8 \mathrm{~V} \leq V_{1} \leq 28 \mathrm{~V} \\ & S E L \text { connected to } \mathrm{Q} \end{aligned}$	P_5.1.1
Output voltage accuracy	$V_{\text {Q }}$	4.9	5.0	5.1	V	$\begin{aligned} & 0.05 \mathrm{~mA} \leq I_{\mathrm{Q}} \leq 175 \mathrm{~mA} \\ & 5.45 \mathrm{~V} \leq V_{1} \leq 40 \mathrm{~V} \\ & \mathrm{SEL} \text { connected to } \mathrm{Q} \end{aligned}$	P_5.1.2
Dropout voltage $V_{\mathrm{dr}}=V_{1}-V_{\mathrm{Q}}$	$V_{\text {dr }}$	-	250	500	mV	$\begin{aligned} & { }^{1)} \mathrm{I}_{\mathrm{Q}}=250 \mathrm{~mA}, \\ & \mathrm{SEL} \text { connected to } \mathrm{Q} \end{aligned}$	P_5.1.7
Dropout voltage $V_{\mathrm{dr}}=V_{1}-V_{\mathrm{Q}}$	$V_{\text {dr }}$	-	100	200	mV	$\begin{aligned} & { }^{1)} \mathrm{I} \mathrm{Q}=100 \mathrm{~mA}, \\ & \mathrm{SEL} \text { connected to } \mathrm{Q} \end{aligned}$	P_5.1.9
Power supply ripple rejection	PSRR	-	60	-	dB	$\begin{aligned} & \text { 2) } f_{\text {ripple }}=100 \mathrm{~Hz} \\ & V_{\text {ripple }}=0.5 \mathrm{~V}_{\mathrm{pp}} \\ & \mathrm{I}_{\mathrm{Q}}=10 \mathrm{~mA} \\ & \mathrm{SEL} \text { connected to } \mathrm{Q} \end{aligned}$	P_5.1.10
3.3 V output voltage							
Output voltage accuracy	$V_{\text {Q }}$	3.23	3.3	3.37	V	$\begin{aligned} & 0.05 \mathrm{~mA} \leq I_{\mathrm{Q}} \leq 350 \mathrm{~mA} \\ & 4.21 \mathrm{~V} \leq V_{1} \leq 28 \mathrm{~V} \\ & S E L \text { connected to GND } \end{aligned}$	P_5.1.12
Output voltage accuracy	V_{Q}	3.23	3.3	3.37	V	$\begin{aligned} & 0.05 \mathrm{~mA} \leq I_{\mathrm{Q}} \leq 175 \mathrm{~mA} \\ & 3.79 \mathrm{~V} \leq V_{1} \leq 40 \mathrm{~V} \\ & \mathrm{SEL} \text { connected to GND } \end{aligned}$	P_5.1.13
Dropout voltage $V_{\mathrm{dr}}=V_{1}-V_{\mathrm{Q}}$	$v_{\text {dr }}$	-	300	600	mV	${ }^{1)} I_{\mathrm{Q}}=250 \mathrm{~mA},$ SEL connected to GND	P_5.1.18
Dropout voltage $V_{\mathrm{dr}}=V_{1}-V_{\mathrm{Q}}$	$v_{\text {dr }}$	-	120	240	mV	${ }^{1)} I_{\mathrm{Q}}=100 \mathrm{~mA} \text {, }$ SEL connected to GND	P_5.1.20
Power supply ripple rejection	PSRR	-	63	-	dB	$\begin{aligned} & \text { 2) } f_{\text {ripple }}=100 \mathrm{~Hz} \\ & V_{\text {ripple }}=0.5 \mathrm{~V}_{\mathrm{pp}} \\ & \mathrm{I}_{\mathrm{Q}}=10 \mathrm{~mA} \end{aligned}$ SEL connected to GND	P_5.1.21

Other electrical characteristics

Output current limitation	$I_{\mathrm{Q}, \max }$	351	500	780	mA	$0 \mathrm{~V}<V_{\mathrm{Q}}<V_{\mathrm{Q}, \text { nom }}-0.1 \mathrm{~V}$	$\mathrm{P}_{-} 5.1 .24$
Load regulation steady-state	$\Delta V_{\mathrm{Q}, \text { load }}$	-15	-5	-	mV	$I_{\mathrm{Q}}=0.05 \mathrm{~mA}$ to 350 mA $V_{\mathrm{l}}=6.5 \mathrm{~V}$	P_5.1.29
Line regulation steady-state	$\Delta V_{\mathrm{Q}, \text { line }}$	-	1	10	mV	$V_{1}=8 \mathrm{~V}$ to 32 V $I_{\mathrm{Q}}=5 \mathrm{~mA}$	P_5.1.30

Block description and electrical characteristics

Table 4 Electrical characteristics voltage regulator (cont'd)
$T_{\mathrm{j}}=-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}, V_{1}=13.5 \mathrm{~V}$, all voltages with respect to ground (unless otherwise specified)
Typical values are given at $T_{\mathrm{j}}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Values			Unit	Note or Test Condition	Number
		Min.	Typ.	Max.			
Overtemperature shutdown threshold		151	175	200	${ }^{\circ} \mathrm{C}$	${ }^{2)} T_{\mathrm{j}}$ increasing	$\mathrm{P}_{2} 5.1 .31$
Overtemperature shutdown threshold hysteresis	$T_{\mathrm{j}, \text { sdh }}$	-	15	-	K	${ }^{2)} T_{\mathrm{j}}$ decreasing	$\mathrm{P}_{2} 5.1 .32$

1) Measured when the output voltage V_{Q} has dropped by 100 mV while input voltage was gradually decreased.
2) Not subject to production test, specified by design

Low Dropout Linear Voltage Regulator
Block description and electrical characteristics

4.2 Typical performance characteristics voltage regulator

Output voltage V_{Q} versus junction temperature T_{j}

Output voltage V_{Q} versus input voltage V_{1}

Output voltage V_{Q} versus junction temperature T_{j}

Output voltage V_{Q} versus input voltage V_{1}

Low Dropout Linear Voltage Regulator
Block description and electrical characteristics

Dropout voltage $V_{\text {dr }}$ versus junction temperature $\boldsymbol{T}_{\mathrm{j}}$

Dropout voltage $V_{d r}$ versus output current I_{Q}

Dropout voltage $V_{\text {dr }}$ versus junction temperature $\boldsymbol{T}_{\mathrm{j}}$

Dropout voltage $V_{d r}$ versus output current I_{Q}

Low Dropout Linear Voltage Regulator
Block description and electrical characteristics

Power supply ripple rejection PSRR versus ripple frequency \boldsymbol{f}

Maximum output current I_{Q} versus input voltage $V_{\mathbf{I}}$

Power supply ripple rejection PSRR versus ripple frequency f

Equivalent series resistance of output capacitor $E S R\left(C_{Q}\right)$ versus output current I_{Q}

Low Dropout Linear Voltage Regulator
Block description and electrical characteristics

Load regulation $\Delta V_{Q, \text { load }}$ versus output current change I_{Q}

Line regulation $\Delta V_{Q, \text { line }}$ versus input voltage V_{1}

Low Dropout Linear Voltage Regulator
Block description and electrical characteristics

4.3 Current consumption

Table 5 Electrical characteristics current consumption
$T_{\mathrm{j}}=-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}, V_{1}=13.5 \mathrm{~V}$ (unless otherwise specified)
Typical values are given at $T_{\mathrm{j}}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Values			Unit	Note or Test Condition	Number
		Min.	Typ.	Max.			
Current consumption $I_{\mathrm{q}}=I_{\mathrm{I}}$		-	-	1	$\mu \mathrm{~A}$	$V_{\mathrm{EN}}=0 \mathrm{~V} ; T_{\mathrm{j}}<105^{\circ} \mathrm{C}$	$\mathrm{P}_{2} 5.3 .8$
Current consumption $I_{\mathrm{q}}=I_{\mathrm{I}}$	$I_{\mathrm{q}, \mathrm{off}}$	-	-	2	$\mu \mathrm{~A}$	$V_{\mathrm{EN}}=0.4 \mathrm{~V} ; T_{\mathrm{j}}<125^{\circ} \mathrm{C}$	P_5.3.10
Current consumption $I_{\mathrm{q}}=I_{\mathrm{I}}-I_{\mathrm{Q}}$	I_{q}	-	20	30	$\mu \mathrm{~A}$	$I_{\mathrm{Q}}=0.05 \mathrm{~mA}$ $T_{\mathrm{j}}=25^{\circ} \mathrm{C}$	P_5.3.11
Current consumption $I_{\mathrm{q}}=I_{\mathrm{I}}-I_{\mathrm{Q}}$	I_{q}	-	23	36	$\mu \mathrm{~A}$	$I_{\mathrm{Q}}=0.05 \mathrm{~mA}$ $T_{\mathrm{j}}<125^{\circ} \mathrm{C}$	P_5.3.12
Current consumption $I_{\mathrm{q}}=I_{\mathrm{I}}-I_{\mathrm{Q}}$	I_{q}	-	25	42	$\mu \mathrm{~A}$	$1) I_{\mathrm{Q}}=350 \mathrm{~mA}$ $T_{\mathrm{j}}<125^{\circ} \mathrm{C}$	P_5.3.13

1) Not subject to production test, specified by design

Low Dropout Linear Voltage Regulator
Block description and electrical characteristics

4.4 Typical performance characteristics current consumption

Current consumption I_{q} versus

 output current I_{Q}

Current consumption I_{q} versus
junction temperature T_{j}

Current consumption I_{q} versus input voltage V_{1}

Block description and electrical characteristics

4.5 Enable

The TLS835D2ELVSE can be switched on and off by the enable feature. Applying a "high" level as specified below with $V_{\text {EN }} \geq 2 \mathrm{~V}$ to the EN pin enables the device. Applying a "low" level as specified below with $V_{\text {EN }} \leq 0.8 \mathrm{~V}$ shuts down the device. The enable feature has a built-in hysteresis to avoid toggling between the ON/OFF state, when a signal with slow slope is applied to the EN pin.

Table 6 Electrical characteristics enable
$T_{\mathrm{j}}=-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}, V_{1}=13.5 \mathrm{~V}$, all voltages with respect to ground (unless otherwise specified)
Typical values are given at $T_{\mathrm{j}}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Values			Unit	Note or	
		Min.	Typ.	Max.			Number Condition

Low Dropout Linear Voltage Regulator
Block description and electrical characteristics

4.6 Typical performance characteristics enable

Output voltage V_{Q} versus
time t (EN switched on)

Enable input current $I_{E N}$ versus
enable input voltage $V_{E N}$

Output voltage V_{Q} versus time t (EN switched on)

4.7 Output voltage selection

The output voltage V_{Q} of TLS835D2ELVSE can be selected by the SEL pin as follows:
SEL pin connected to $\mathrm{Q}: V_{\mathrm{Q}}=5 \mathrm{~V}$;
SEL pin connected to GND: $V_{Q}=3.3 \mathrm{~V}$.

4.8 Reset function

The reset function monitors the output voltage V_{Q} and indicates a potential imminent loss of power. This then allows enough time for the system to shut down or do the transition into a safe state. To meet the requirements of the application, some reset parameters can be adjusted by measures described in the following subsections.

Output undervoltage reset

The reset output RO is an open collector stage. It is internally pulled up to V_{Q} via a resistor Reset output internal pull-up resistor (Table 7). In the case of an undervoltage event at V_{Q}, RO is pulled to "low". This signal can then be used to reset a microcontroller during low supply voltage.

Optional output undervoltage reset pull-up resistor $\boldsymbol{R}_{\mathrm{R} 0, \mathrm{ext}}$

Although the reset output RO is an open collector output with an integrated pull-up resistor, an additional, external pull-up resistor can be added to the output Q , if needed. A minimum value for the external resistor $R_{\mathrm{Ro}, \text { ext }}$ is specified in Table 7 in case this option is used.

Power-on reset delay time

The power-on reset delay time $t_{\text {rd }}$ allows a microcontroller and oscillator to start up. This delay time is the time interval from exceeding the reset switching threshold $V_{\text {RT, high }}$ until the reset is released by switching the reset output RO from "low" to "high". The power-on reset delay time t_{rd} is defined by an external delay capacitor C_{D} connected to pin $\mathrm{D} . \mathrm{C}_{\mathrm{D}}$ is charged by the delay capacitor charge current $I_{\mathrm{D}, \mathrm{ch}}$ starting from $V_{\mathrm{D}}=0 \mathrm{~V}$.
If the application requires a power-on reset delay time $t_{r d}$ that differs from the default value specified in Table 7, the required value of the delay capacitor can be derived from the specified value and the desired power-on delay time as follows:

$$
\begin{equation*}
C_{D}=\frac{t_{r d}}{t_{r d, 100 n F}} \cdot C_{D, 100{ }_{n F}} \tag{4.1}
\end{equation*}
$$

where

- C_{D} : required capacitance of the delay capacitor
- t_{rd} : desired power-on reset delay time
- $t_{\mathrm{rd}, 100 \mathrm{nF}}$: Power-on reset delay time (Table 7) for $C_{\mathrm{D}}=100 \mathrm{nF}$ as specified in this data sheet

For a precise calculation, the tolerance of the delay capacitor also has to be taken into consideration.

Reset reaction time

The reset reaction time ensures that short undervoltage spikes do not trigger an unwanted reset "low" signal. The reset reaction time $t_{r, \text { total }}$ comprises of the internal reaction time $t_{r r, i n t}$ and the discharge time $t_{r r, d}$ defined by the external delay capacitor C_{D}. Therefore, the total reset reaction time becomes:
$t_{r r, t o t a l}=t_{r r, i n t}+t_{r r, d}$
where

- $t_{\text {rr,total }}$: Reset reaction time

Block description and electrical characteristics

- $t_{\text {rr, int: }}$ Internal reset reaction time
- $t_{\mathrm{rr}, \mathrm{d}}$: Delay capacitor discharge time

Reset adjust function

For selecting the default switching threshold as specified in Table 7 under $V_{\text {RT,low }}$, connect the RADJ pin to GND.
To adjust the undervoltage reset lower switching threshold according to the requirements of the application, an external voltage divider $\left(R_{\text {ADJ1 }}, R_{\text {ADJ2 }}\right)$ is required at pin RADJ. In this case, it should be noted that an additional current is dissipated by the resistors of the voltage divider.
With a voltage divider connected, the adjusted undervoltage reset lower switching threshold $V_{\text {RT,low, new }}$ is calculated according to the following equation:
$V_{R T, \text { low, } \text { new }}=V_{R A D J, \text { th }}\left(\frac{R_{A D J 1}}{R_{A D J 2}}+1\right)$
where

- $V_{R T, l o w, n e w}$: the desired new undervoltage reset switching lower threshold
- $R_{\mathrm{ADJ} 1}, R_{\mathrm{AD} / 2}$: resistors of the external voltage divider
- $V_{\text {RAD,th }}$: reset adjustment switching threshold given in Table 7

Figure 5 Block diagram reset function

Low Dropout Linear Voltage Regulator
Block description and electrical characteristics

Figure 6 Timing diagram reset

Table 7 Electrical characteristics reset

$T_{\mathrm{j}}=-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}, V_{1}=13.5 \mathrm{~V}$, all voltages with respect to ground (unless otherwise specified).
Typical values are given at $T_{\mathrm{j}}=25^{\circ} \mathrm{C}, V_{1}=13.5 \mathrm{~V}$.

Parameter	Symbol	Values			Unit	Note or Test Condition	Number
		Min.	Typ.	Max.			
Output undervoltage reset (5 V output voltage)							
Outputundervoltage resetupper switching threshold	$V_{\text {RT,high }}$	4.6	4.7	4.8	V	V_{Q} increasing, $V_{\text {EN }} \geq 2.0 \mathrm{~V}$, RADJ connected to GND, SEL connected to Q	P_5.8.1
Output undervoltage reset lower switching threshold	$V_{\text {RT, Iow }}$	4.5	4.6	4.7	v	V_{Q} decreasing, $V_{\text {EN }} \geq 2.0 \mathrm{~V}$, RADJ connected to GND, SEL connected to Q	P_5.8.2

Block description and electrical characteristics

Table 7 Electrical characteristics reset (cont'd)
$T_{\mathrm{j}}=-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}, V_{1}=13.5 \mathrm{~V}$, all voltages with respect to ground (unless otherwise specified).
Typical values are given at $T_{\mathrm{j}}=25^{\circ} \mathrm{C}, V_{1}=13.5 \mathrm{~V}$.

Parameter	Symbol	Values			Unit	Note or Test Condition	Number
		Min.	Typ.	Max.			
Reset adjustment switching threshold	$V_{\text {RADJ,th }}$	0.86	0.9	0.94	V	SEL connected to Q	P_5.8.4
Reset threshold adjustment range	$V_{\text {RT, range }}$	2	-	4.2	V	SEL connected to Q	P_5.8.5

Output undervoltage reset (3.3 V output voltage)

Outputundervoltage resetupper switching threshold	$V_{\text {RT, high }}$	3.03	3.10	3.17	V	V_{Q} increasing, $V_{\text {EN }} \geq 2.0 \mathrm{~V}$, RADJ connected to GND, SEL connected to GND	P_5.8.6
Output undervoltage reset lower switching threshold	$V_{\text {RT,low }}$	2.97	3.03	3.10	V	V_{Q} decreasing, $V_{\text {EN }} \geq 2.0 \mathrm{~V}$, RADJ connected to GND, SEL connected to GND	P_5.8.7
Reset adjustment switching threshold	$V_{\text {RADJ,th }}$	0.86	0.9	0.94	V	SEL connected to GND	P_5.8.9
Reset threshold adjustment range	$V_{\text {RT, range }}$	2	-	2.75	V	SEL connected to GND	P_5.8.10

Reset output RO

Reset output "low" voltage	$V_{\text {RO, low }}$	-	0.2	0.4	V	$\begin{aligned} & 1 \mathrm{~V} \leq V_{\mathrm{Q}} \leq V_{\mathrm{RT}} ; \\ & R_{\mathrm{RO}}>4.7 \mathrm{k} \Omega \end{aligned}$	P_5.8.11
Reset output internal pull-up resistor	$R_{\text {Ro,int }}$	13	20	36	k Ω	internally connected to Q	P_5.8.12
Reset output external pull-up resistor to V_{Q}	$R_{\mathrm{R}, \mathrm{ext}}$	4.7	-	-	k Ω	$\begin{aligned} & 1 \mathrm{~V} \leq V_{\mathrm{Q}} \leq V_{\mathrm{RT}} ; \\ & V_{\mathrm{RO}} \leq 0.4 \mathrm{~V} \end{aligned}$	P_5.8.13

Power-on reset delay time	$t_{\text {rd }}$	17	25	37	ms	$\begin{aligned} & C_{D}=100 \mathrm{nF} \\ & \text { Calculated value } \end{aligned}$	P_5.8.15
Upper delay switching threshold	$V_{\text {DU }}$	-	0.9	-	V	-	P_5.8.16
Lower delay switching threshold	$V_{D L}$	-	0.6	-	V	-	P_5.8.17
Delay capacitor charge current	$I_{\text {d,ch }}$	-	3.6	-	$\mu \mathrm{A}$	$V_{\mathrm{D}}=1 \mathrm{~V}$	P_5.8.18
Delay capacitor discharge current	$I_{\text {D,dch }}$	-	210	-	mA	$V_{D}=1 \mathrm{~V}$	P_5.8.19
Delay capacitor discharge time	$t_{\text {r, }, \mathrm{d}}$	-	2	4	$\mu \mathrm{S}$	$\begin{aligned} & C_{D}=100 \mathrm{nF} \\ & \text { Calculated value } \end{aligned}$	P_5.8.20

Block description and electrical characteristics

Table 7 Electrical characteristics reset (cont'd)

$T_{\mathrm{j}}=-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}, V_{1}=13.5 \mathrm{~V}$, all voltages with respect to ground (unless otherwise specified).
Typical values are given at $T_{\mathrm{j}}=25^{\circ} \mathrm{C}, V_{1}=13.5 \mathrm{~V}$.

Parameter	Symbol	Values			Unit	Note or Test Condition	Number
		Min.	Typ.	Max.			
Internal reset reaction time ${ }^{1)}$		-	8	14	$\mu \mathrm{~s}$	$C_{D}=0 \mathrm{nF}$	$P_{-} 5.8 .21$
Reset reaction time	$t_{\text {rr,total }}$	-	10	18	$\mu \mathrm{~S}$	$C_{D}=100 \mathrm{nF}$ Calculated value	$P_{-} 5.8 .22$

1) Parameter not subject to production test; specified by design.

Low Dropout Linear Voltage Regulator
Block description and electrical characteristics

4.9 Typical performance characteristics Reset

Undervoltage reset threshold $V_{\text {RT }}$ versus junction temperature $\boldsymbol{T}_{\mathbf{j}}$

Power-on reset delay time $\boldsymbol{t}_{\mathrm{rd}}$ versus junction temperature $\boldsymbol{T}_{\mathbf{j}}$

Undervoltage reset threshold $V_{\text {RT }}$ versus junction temperature T_{j}

Reset reaction time $t_{\text {rr }}$ versus junction temperature $\boldsymbol{T}_{\mathbf{j}}$

5 Application information

5.1 Application diagram

Note: \quad The following information is given as a hint for the implementation of the device only and shall not be regarded as a description or warranty of a certain functionality, condition or quality of the device.

Figure 7 Application diagram

Note: \quad This is a very simplified example of an application circuit. The function must be verified in the real application.

5.2 Selection of external components

5.2.1 Input pin

Figure 7 shows an example of the input circuitry for a linear voltage regulator. A ceramic capacitor at the input, in the range of 100 nF to 470 nF , is recommended to filter out the high frequency disturbances imposed by the line, for example ISO pulses 3a/b. This capacitor must be placed very close to the input pin of the linear voltage regulator on the PCB.
An aluminum electrolytic capacitor in the range of $10 \mu \mathrm{~F}$ to $470 \mu \mathrm{~F}$ is recommended as an input buffer to smooth out high energy pulses, such as ISO pulses 2a. This capacitor must be placed close to the input pin of the linear voltage regulator.
An overvoltage suppressor diode can be used to further suppress any high voltage beyond the maximum rating of the linear voltage regulator and to protect the device from damage due to overvoltage.
The external components at the input pin are optional, but they are recommended to deal with possible external disturbances.

5.2.2 Output pin

An output capacitor is mandatory for the stability of linear voltage regulators. Furthermore it serves as an energy buffer during load jumps, to compensate and maintain a constant output voltage potential. It must be dimensioned according to the specific requirements of the application. The requirements for the output capacitor are given in "Functional range" on Page 8.

Application information

TLS835D2ELVSE is designed to also be stable with low ESR capacitors. According to the automotive requirements, ceramic capacitors with X5R or X7R dielectrics are recommended.
The output capacitor should be placed as close as possible to the voltage regulator's output pin and GND pin and on the same side of the PCB as the regulator itself.
In case of input voltage or load current transients, the capacitance should be dimensioned accordingly. The configuration has to be verified in the real application to ensure that the output stability requirements are fulfilled.

5.3 Thermal considerations

From the known input voltage, the output voltage and the load profile of the application, the total power dissipation can be calculated as follows:
$P_{D}=\left(V_{I}-V_{Q}\right) I_{Q}+V_{I} I_{q}$
with

- P_{D} : continuous power dissipation
- V_{i} : input voltage
- V_{Q} : output voltage
- I_{Q} : output current
- I_{q} : quiescent current

The maximum acceptable thermal resistance $R_{\text {thJA }}$ is given by:
$R_{t h J A}=\frac{T_{j, \max }-T_{a}}{P_{D}}$
with

- $T_{\mathrm{j}, \text { max }}$: maximum allowed junction temperature
- T_{a} : ambient temperature

Based on the above calculation the proper PCB type and the necessary heat sink area can be determined by referencing the specification for "Thermal resistance" on Page 9.

5.4 Reverse polarity protection

TLS835D2ELVSE is not protected against reverse polarity faults and must be protected by external components against negative supply voltage. An external reverse polarity diode is necessary. The absolute maximum ratings of the device as specified in "Absolute maximum ratings" on Page 7 must be maintained.

5.5 Further application information

For further information you may contact https://www.infineon.com/

Package information

6 Package information

Bottom View

1) Does not include plastic or metal protrusion of 0.15 max. per side
2) Does not include dambar protrusion

Figure 8 PG-SSOP-14 ${ }^{1)}$

Green Product (RoHS compliant)

To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e. Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).

Further information on packages

https://www.infineon.com/packages

[^0] Low Dropout Linear Voltage Regulator

Revision history

$7 \quad$ Revision history

Revision	Date	Changes
1.1	$2018-09-17$	Editorial changes Updated T to T_{j} in graph of "Equivalent series resistance of output capacitor $E S R\left(C_{\mathrm{Q}}\right)$ versus output current I_{Q} " Reworked reset description, updated timing diagram reset
1.01	$2018-03-12$	Editorial Changes
1.0	$2018-02-19$	Initial Version

Trademarks
All referenced product or service names and trademarks are the property of their respective owners.
Edition 2018-09-17
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2018 Infineon Technologies AG. All Rights Reserved.

Do you have a question about any aspect of this document?

Email: erratum@infineon.com

Document reference
 Z8F61372421

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").
With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.
In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.
The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

[^0]: 1) Dimensions in mm
