VDSS

600V

ID

47A

Lead Free Package and Finish

Applications:

- Switch Mode Power Supply(SMPS)
- Uninterruptible Power Supply(UPS)
- •PFC stages for server & telecom
- Motor Controls

Features:

- •New revolutionary high voltage technology
- •Better RDS(on) in TO-247
- •Ultra Low Gate Charge cause lower driving requirements
- •Periodic avalanche rated
- •Integrate fast recovery diode

TO-247 S TO-247 3.Source

RDS(ON)(Typ.)

 $60 \text{m}\Omega$

Not to Scale

Ordering Information

Part Number	Package	Marking
RS60R070W	TO-247	RS60R070W

Absolute Maximun Ratings Tc=25℃ unless otherwise specified

Symbol	Parameter	RS60R070W	Units
VDSS	Drain-to-Source Voltage	600	V
ID	Continuous Drain Current (TC = 25°C)	47	
טון	Continuous Drain Current (TC = 100°C)	29	Α
IDМ	Pulsed Drain Current (Note*1)	140	
PD	Power Dissipation(Tc=25°C)	303	W
VGS	Gate-to-Source Voltage	±30	V
EAS	Single Pulse Avalanche Engergy (Note*2)	900	mJ
IAR	Avalanche Current (Note*1)	10.0	А
Ear	Repetitive Avalanche Engergy (Note*1)	1.72	mJ
	Maximum Temperature for Soldering		
TL	Leads at 0.063in(1.6mm)from Case for 10	300	
TPKG	seconds	260	°C
	Package Body for 10 seconds		
T. and Toto	Operating Junction and Storage	FF to 150	
TJ and TSTG	Temperature Range	-55 to 150	

^{*}Drain Current Limited by Maximum Junction Temperature

Caution:Stresses greater than those listed in the "Absolute Maximum Ratings" Table may cause permanent damage to the device.

Thermal Resistance

Symbol	Parameter	RS60R070W	Units	Test Conditions
RθJC	Junction-to-Case	0.32	°C/W	Drain lead soldered to water cooled heatsink,PD Adjusted for a peak junction temperature of +150°C.
RθJA	Junction-to-Ambient	62		1 cubic foot chamber,free air.

OFF Characteristics TJ=25°C unless otherwise specified

Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
BVDSS	Drain to course Prockdown Voltage	600			٧	VGS = 0V, ID = 250µA, TJ= 25℃
Бурзз	Drain-to-source Breakdown Voltage	1-to-source Breakdown Voltage 600	600		٧	VGS = 0V, ID = 250μA, TJ= 150℃
IDSS	Drain-to-Source Leakage Current			3.0	μA	VDS=600V,VGS=0V
IGSS	Gate-to-Source Forward Leakage		-	100		VGS=+30V VDS=0V
1000	Gate-to-Source Reverse Leakage		-	-100	nΑ	VGS=-30V VDS=0V

ON Characteristics TJ=25℃ unless otherwise specified

Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
RDS(on)	Static Drain-to-Source On-Resistance	-	60	75	mΩ	VGS=10V,ID=23A
VGS(TH)	Gate Threshold Voltage	2.0		4.5	٧	VGS=VDS,ID=250µA
gFS	Forward Transconductance		30		S	VDS = 40V, ID = 25A

Resistive Switching Characteristics Essentially independent of operating temperature

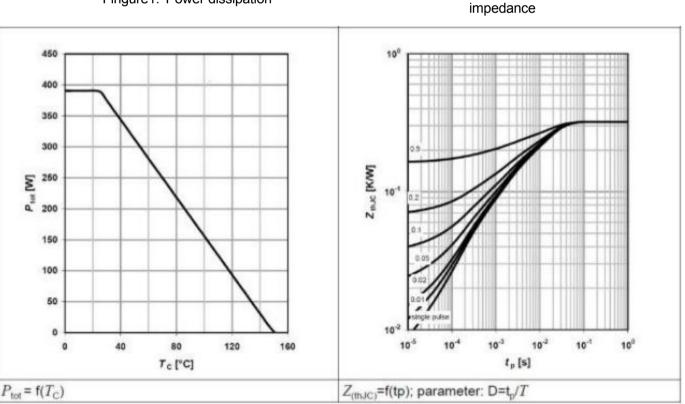
Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
td(ON)	Turn-on Delay Time		19			VDS=480V
trise	Rise Time		10			ID=23A
td(OFF)	Turn-OFF Delay Time		87		ns	RG=20Ω VGS=10V
tfall	Fall Time		5			VGS=10V

Dynamic Characteristics Essentially independent of operating temperature

Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
Ciss	Input Capacitance		3100			VGS=0V
Coss	Output Capacitance		148		pF	VDS=25V
Crss	Reverse Transfer Capacitance		5			f=1.0MHz
Qg	Total Gate Charge		190			VDS=480V
Qgs	Gate-to-Source Charge		30		nC	ID=23A
Qgd	Gate-to-Drain("Miller") Charge		95			VGS=10V

Fingure2. Max. transient thermal

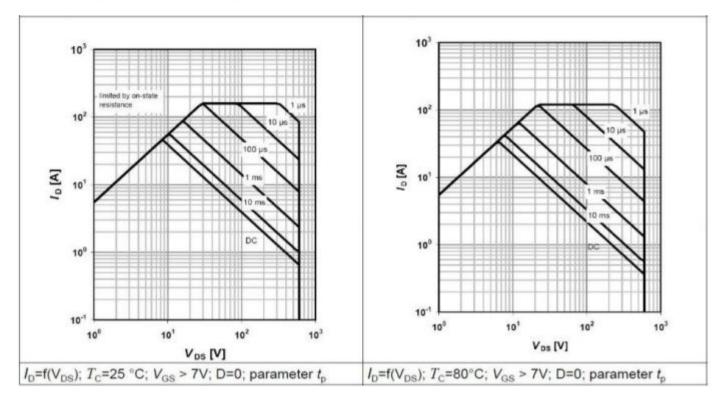



Source-Drain Diode Characteristics

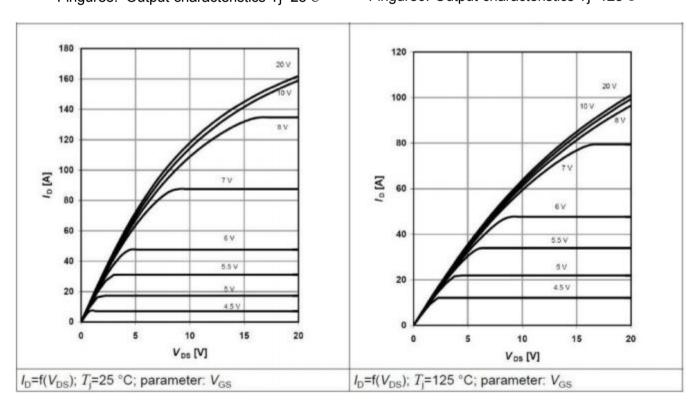
Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
IS	Continuous Source Current		-	47	Α	Integral pn-diode
ISM	Maximum Pulsed Current		-	140	Α	in MOSFET
VSD	Diode Forward Voltage	-	0.9	1.5	V	IS=23A,VGS=0V Tj=25℃
trr	Reverse Recovery Time		210		nS	VGS=0V
Qrr	Reverse Recovery Charge	-	2.5		μC	IS=23A,di/dt=100A/μs

Notes:

Typical Feature curve $T_J=25^{\circ}C$, unless otherwise noted

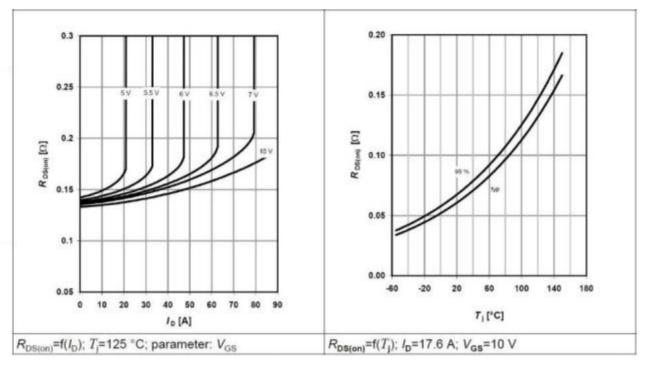

^{*1.}Repetitive rating; pulse width limited by maximum junction temperature.

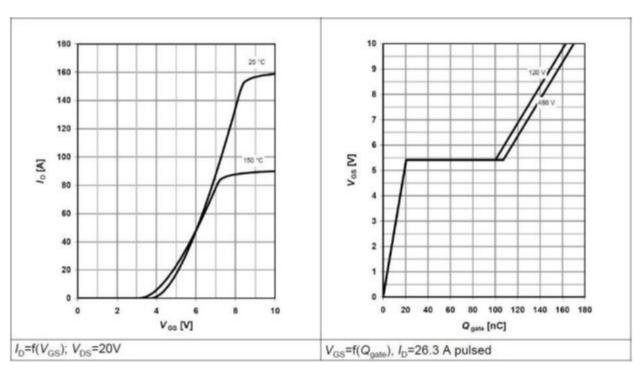
^{*2.} Pulse width tp limited by Tj,max


Fingure3. Safe operating areaTc=25℃

Fingure4. Safe operating areaTc=80°C

Fingure5. Output characteristics Tj=25°C


Fingure6. Output characteristics Tj=125℃

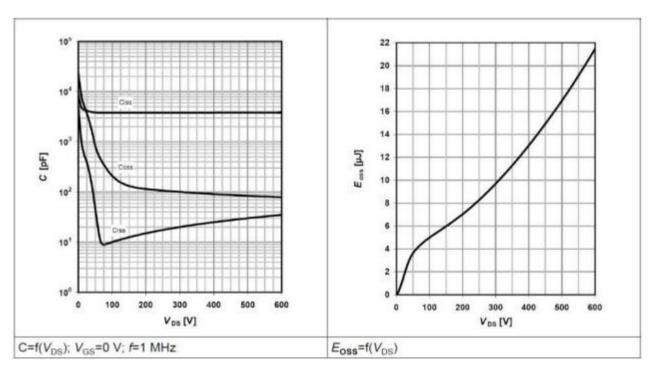

Fingure7. Type drain-source on state resistance

Fingure8. Typ. drain-source on state resistance

Fingure9. Typ. transfer characteristics

Fingure 10. Gate charge

Fingure 12. Drain-source



Fingure11. Avalanche energy

breakdown voltage 740 1100 720 1000 900 700 800 680 700 E AS [mJ] 500 640 400 300 620 200 600 100 20 180 -60 -20 60 100 140 60 100 140 180 20 7, [°C] T, [°C] $E_{AS}=f(T_j); I_D=9.3 A; V_{DD}=50 V$ $V_{BR(DSS)}=f(T_i); I_D=1.0 \text{ mA}$

Fingure 13. Typ. Capacitances

Fingure14. Coss stored energy

Test Circuits and Waveforms

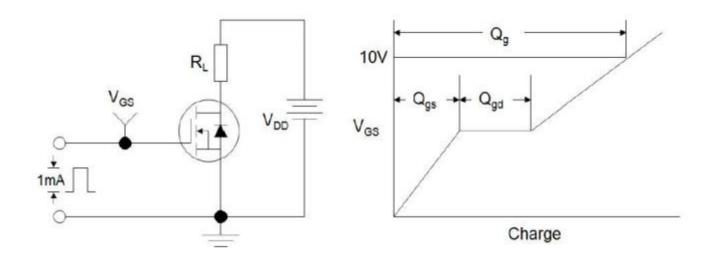


Figure A.
Gate Charge Test Circuit and Waveform

#

#

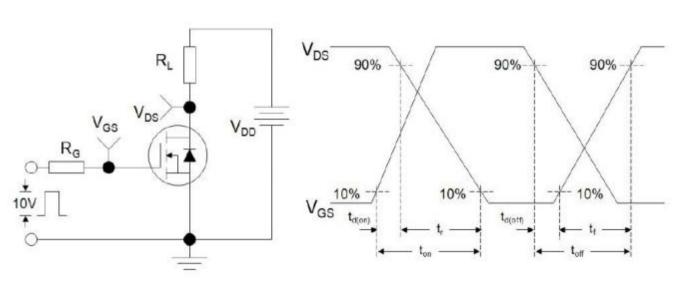


Figure B.
Resistive Switching Test Circuit and Waveform

Test Circuits and Waveforms

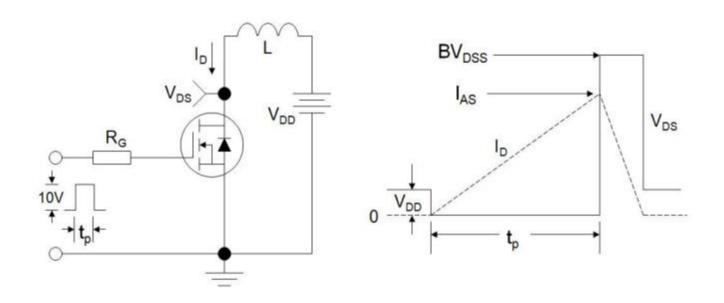
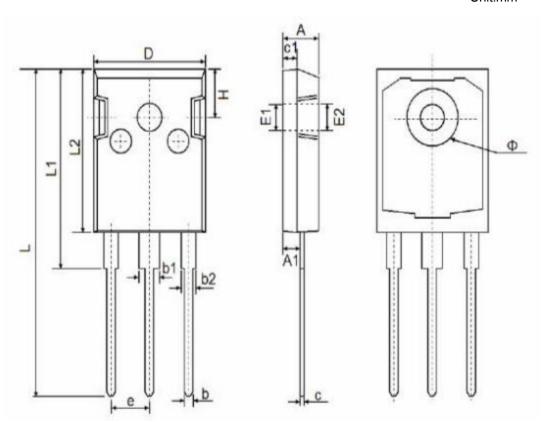



Figure C.Unclamped Inductive Switching Test Circuit and Waveform

Package outline drawing

Unit:mm

TO-247

Combal	Dimensions	In Millimeters	Dimension	s in inches	
Symbol	Min.	Max.	Min.	Max.	
A	4.850	5.150	0.191	0.200	
A1	2.200	2.600	0.087	0.102	
b	1.000	1.400	0.039	0.055	
b1	2.800	3.200	0.110	0.126	
b2	1.800	2.200	0.071	0.087	
c	0.500	0.700	0.020	0.028 0.083	
c1	1.900	2.100	0.075		
D	15.450	15.750	0.608	0.620	
E1	3.500	REF	0.138	8 REF	
E2	3.600	3.600 REF		REF	
L	40.900	41.300	1.610	1.626	
L1	24.800	25.100	0.976	0.988	
L2	20.300	20.600	0.799	0.811	
Ф	7.100	7.300	0.280	0.287	
е	5.450	TYP	0.215	TYP	
н	5.980	REF	0.235	REF	

Disclaimers:

Reasunos Semiconductor Technology CO.,LTD(Reasunos)reserves the right to make changes without notice in order to improve reliability,function or design and to discontinue any product or service without notice. Customers should obtain the latest relevant information before orders and should verify that such information in current and complete.All products are sold subject to Reasunos's terms and conditions supplied at the time of order acknowledgement.

Reasunos Semiconductor Technology CO.,LTD warrants performance of its hardware products to the speciffications at the time of sale. Testing, reliability and quality control are used to the extene Reasunos deems necessary to support this warrantee. Except where agreed upon by contractual agreement, testing of all parameters of each product is not necessarily performed.

Reasunos Semiconductor Technology CO.,LTD does not assume any liability arising from the use of any product or circuit designs described herein. Customers are responsible for their products and applications using Reasunos's components. To minimize risk, customers must provide adequate design and operating safeguards.

Reasunos Semiconductor Technology CO.,LTD does not warrant or convey any license either expressed or implied under its patent rights,nor the rights of others. Reproduction of information in Reasunos's data sheets or data books is permissible only if reproduction is without modification oralteration. Reproduction of this information with any alteration is an unfair and deceptive business practice. Reasunos Semiconductor Technology CO.,LTD is not responsible or liable for such altered documentation.

Resale of Reasunos's products with statements different from or beyond the parameters stated by Reasunos Semiconductor Technology CO.,LTD for that product or service voids all express or implied warrantees for the associated Reasunos's product or service and is unfair and deceptive business practice. Reasunos Semiconductor Technology CO.,LTD is not responsible or liable for such statements.

Life Support Policy:

Reasunos Semiconductor Technology CO.,LTD's Products are not authorized for use as critical components in life support devices or systems without the expressed written approval of Reasunos Semiconductor Technology CO.,LTD.

As used herein:

- 1.Life support devices or systems are devices or systems which:
 - a.are intended for surgical implant into the human body,
 - b.support or sustain life,
 - c.whose failuer to when properly used in accordance with instructions for used provided in the laeling,can be reasonably expected to result in significant injury to the user.

system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.