High Power LED Series
 3535 Ceramic Hot Binning

LH351D

For High TLCI

High efficacy and high quality color rendering makes the LH351D suitable use in a broad range of applications

Features \& Benefits

- Operates at a maximum current of up to 3.0 A
- Uniform light distribution under any beam angle
- 90 CRI makes it well suited for most applications
- Hot binning @ $85{ }^{\circ} \mathrm{C}$

Applications

- Indoor Lighting: Spotlight, Downlight
- Outdoor Lighting: Street Light, Tunnel Light, Security Light, Area Light, Stadium/Arena Light
- Industrial Lighting: High Bay Light, Low Bay Light
- Consumer Lighting: Torch Light

Table of Contents

1. Characteristics 3
2. Product Code Information 6
3. Typical Characteristics Graphs 12
4. Outline Drawing \& Dimension 14
5. Reliability Test Items \& Conditions 15
6. Soldering Conditions 16
7. Tape \& Reel ----------------------- 17
8. Label Structure 19
9. Packing Structure 20
10. Precautions in Handling \& Use 22
11. Characteristics
a) Absolute Maximum Rating

Item	Symbol	Rating	Unit	Condition
Operating Temperature	$\mathrm{T}_{\text {opr }}$	$-40 \sim+105$	${ }^{\circ} \mathrm{C}$	Note 1)*
Storage Temperature	$\mathrm{T}_{\text {stg }}$	$-40 \sim+120$	${ }^{\circ} \mathrm{C}$	-
LED Junction Temperature	T_{j}	150	${ }^{\circ} \mathrm{C}$	Note 1)*
Forward Current	I_{F}	3000	mA	-
Peak Pulse Forward Current	IFP	5000	mA	Duty $1 / 10$ pulse width 10 ms
Assembly Process Temperature		$\begin{aligned} & 260 \\ & <10 \end{aligned}$	$\begin{gathered} { }^{\circ} \mathrm{C} \\ \mathrm{~S} \end{gathered}$	-
ESD (HBM)	-	± 8	kV	-

Notes:

1) Refer to the derating curve, '3. Typical Characteristics Graph', for proper driving current that maintained below maximum junction temperature.
b) Electro-optical Characteristics

Item	Unit	Nominal CCT (K)	Condition		Value Typ.
			$\mathrm{IF}_{\mathrm{F}}(\mathrm{mA})$	$\mathrm{T}_{\mathrm{j}}\left({ }^{\circ} \mathrm{C}\right)$	
Luminous Flux (Φ_{v})	Lm	$\begin{gathered} 5700 \\ (90 \mathrm{CRI}) \end{gathered}$	350	85	153
			700	85	290
			1050	25	455
			1050	85	414
			1500	85	558
			2000	85	700
			3000	85	930
Forward Voltage (V_{F})	V		350	85	2.72
			700	85	2.81
			1050	25	2.96
			1050	85	2.90
			1500	85	3.00
			2000	85	3.10
			3000	85	3.28
Reverse Voltage (@ 5 mA)	V			25	14~19.5
Thermal Resistance (junction to solder point)	${ }^{\circ} \mathrm{C} / \mathrm{W}$			25	2.2
Beam Angle	\bigcirc		1050	25	128

Notes:

1) Samsung maintains measurement tolerance of: luminous flux $= \pm 7 \%$, forward voltage $= \pm 0.1 \mathrm{~V}$
2) Characteristics @ $25^{\circ} \mathrm{C}$ are for reference only
c) Luminous Flux Characteristics $\left(\mathrm{T}_{\mathrm{j}}=85{ }^{\circ} \mathrm{C}\right.$)

Sorting @ 1050 mA (lm)			Calculated Minimum Flux ${ }^{\text {2) }}$ (Im)					
Flux Rank	Flux Range ${ }^{\text {1) }}$	Sub Rank	@ 350 mA	@ 700 mA	@ 1050 mA	@ 1500 mA	@ 2000 mA	@ 3000 mA
S6	$380 \sim 440$	S2, T2, U2	140	266	380	513	643	854

Notes:

1) Samsung maintains measurement tolerance of: luminous flux $= \pm 7 \%, C R I= \pm 3$
2) Calculated minimum flux values are for reference only
2. Product Code Information

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
S	P	H	W	H	T	L	3	D	A	0	T	V	4	Q	T	S	6

a) Luminous Flux Bins ($\mathrm{I}_{\mathrm{F}}=1050 \mathrm{~mA}, \mathrm{~T}_{\mathrm{j}}=85{ }^{\circ} \mathrm{C}$)

CRI/ Nominal CCT (K)		Flux rank											
		K2	M 2	N 2	P2	Q2	R2	S2	T2	U_{2}	V2	W2	Y_{2}
(min. flux) 260			280	300	320	340	360	380	400	420	440	460	480
90	5700								L3DAO				

b) Color Bins ($\mathrm{I}_{\mathrm{F}}=1050 \mathrm{~mA}, \mathrm{~T}_{\mathrm{j}}=85^{\circ} \mathrm{C}$)

Nominal CCT (K)	CRI (Ralor Rank	Chromaticity Bins	
5700	90	QT (ANSI bin)	Q1, Q2, Q3, Q4

c) Voltage Bins ($\mathrm{I}_{\mathrm{F}}=1050 \mathrm{~mA}, \mathrm{~T}_{\mathrm{j}}=85{ }^{\circ} \mathrm{C}$)

Nominal CCT (K)	$\mathrm{CRI}\left(\mathrm{R}_{\mathrm{a}}\right)$ Min.	Product Code	Voltage Rank	Voltage Bin	Voltage Range (V)
				U2	2.6 ~ 2.8
-	-	-	V4	V2	2.8 ~ 3.0
				W2	$3.0 \sim 3.2$

d) Chromaticity Region \& Coordinates ($\mathrm{I}_{\mathrm{F}}=1050 \mathrm{~mA}, \mathrm{~T}_{\mathrm{j}}=85{ }^{\circ} \mathrm{C}$)

Region	CIE x	CIE y	Region	CIE x	CIE y
QT rank (5700 K)					
Q1	0.3215	0.3350	Q3	0.3207	0.3462
	0.3290	0.3417		0.3290	0.3538
	0.3290	0.3300		0.3290	0.3417
	0.3222	0.3243		0.3215	0.3350
Q2	0.3290	0.3417	Q4	0.3290	0.3538
	0.3371	0.3490		0.3376	0.3616
	0.3366	0.3369		0.3371	0.3490
	0.3290	0.3300		0.3290	0.3417

Note:

Samsung maintains measurement tolerance of: $\quad \mathrm{Cx}, \mathrm{Cy}= \pm 0.005$

3. Typical Characteristics Graphs

a) Spectrum Distribution ($\mathrm{I}_{\mathrm{F}}=1050 \mathrm{~mA}, \mathrm{~T}_{\mathrm{j}}=85{ }^{\circ} \mathrm{C}$)

b) Forward Current Characteristics ($\mathrm{T}_{\mathrm{j}}=85{ }^{\circ} \mathrm{C}$)

c) Temperature Characteristics $\left(\mathrm{I}_{\mathrm{F}}=\mathbf{1 0 5 0} \mathrm{mA}\right)$

d) Color Shift Characteristics ($\mathrm{I}_{\mathrm{F}}=1050 \mathrm{~mA}, \mathrm{~T}_{\mathrm{j}}=85{ }^{\circ} \mathrm{C}$)

e) Derating Curve and Beam Angle Characteristics ($\mathrm{I}_{\mathrm{F}}=1050 \mathrm{~mA}, \mathrm{~T}_{\mathrm{j}}=25{ }^{\circ} \mathrm{C}$)

4. Outline Drawing \& Dimension

Recommended Soldering Pattern

Notes:

1) This LED has built-in ESD protection device(s) connected in parallel to LED chip(s).
2) The thermal pad is electrically isolated from the anode and cathode contact pads.
3) T_{s} point and measurement method:
(1) Measure the nearest point to thermal pad as shown above. If necessary, remove PSR of PCB to reach T_{s} point.
(2) All pads must be soldered to the PCB to dissipate heat properly, otherwise the LED can be damaged.

Precautions:

1) Pressure on the LEDs will influence to the reliability of the LEDs. Precautions should be taken to avoid strong pressure on the LEDs. Do not put stress on the LEDs during heating.
2) Re-soldering should not be done after the LEDs have been soldered. If re-soldering is unavoidable, LED`s characteristics should be carefully checked before and after such repair.
3) Do not stack assembled PCBs together. Since materials of LEDs is soft, abrasion between two PCB assembled with LED might cause catastrophic failure of the LEDs.

5. Reliability Test Items \& Conditions

a) Test Items

Test Item	Test Condition	Test Hour / Cycle	Sample Size
Room Temperature Life Test	$25^{\circ} \mathrm{C}$, Maximum Rated Drive Current	1000 h	11
High Temperature Life Test	$85{ }^{\text {ºC, Maximum Rated Drive Current }}$	1000 h	22
High Temperature Humidity Life Test	$85{ }^{\circ} \mathrm{C}, 85$ \% R.H., Maximum Rated Drive Current	1000 h	22
Low Temperature Life Test	-40 ${ }^{\circ} \mathrm{C}$, Maximum Rated Drive Current	1000 h	22
Powered Temperature Cycle	$-40^{\circ} \mathrm{C} / 10 \mathrm{~min} \leftrightarrow 85^{\circ} \mathrm{C} / 10 \mathrm{~min}$, sweep 20 min cycle on/off: each 5 min , Maximum Rated Drive Current	1000 h	18
Damp Heat Cycling	$\begin{gathered} -10{ }^{\circ} \mathrm{C} \leftrightarrow 25{ }^{\circ} \mathrm{O} / \mathrm{Dry} \leftrightarrow 65{ }^{\circ} \mathrm{C} / 95 \% \mathrm{RH} \\ , 24 \mathrm{~h} / 1 \text { cycle } \end{gathered}$	10 cycles	11
Temperature Cycling	$-45{ }^{\circ} \mathrm{C} / 15 \mathrm{~min} \leftrightarrow 125{ }^{\circ} \mathrm{C} / 15 \mathrm{~min}$ temperature change within 5 min	500 cycles	100
High Temperature Storage	$120{ }^{\circ} \mathrm{C}$	1000 h	11
High Temperature Humidity Storage	$85{ }^{\circ} \mathrm{C}, 85 \%$ R.H.	1000 h	11
ESD (HBM)		5 times	30
ESD (MM)	$R_{1}: 10 \mathrm{M} \Omega$ R_{2} : 0 C: 200 pF V: $\pm 0.5 \mathrm{kV}$	5 times	30
Vibration Test	20~2000~20 Hz, $200 \mathrm{~m} / \mathrm{s}^{2}$, sweep 4 min $\mathrm{X}, \mathrm{Y}, \mathrm{Z} 3$ direction, each 1 cycle	4 cycles	11
Mechanical Shock Test	$\begin{gathered} 1500 \mathrm{~g}, 0.5 \mathrm{~ms} \\ 3 \text { shocks each } X-Y-Z \text { axis } \end{gathered}$	5 cycles	11

b) Criteria for Judging the Damage

Item	Symbol	Test Condition $\left(T_{j}=25^{\circ} \mathrm{C}\right)$	Limit	Max.
Forward Voltage	$\mathrm{I}_{\mathrm{F}}=1050 \mathrm{~mA}$	Init. Value * 0.9	Init. Value * 1.1	
Luminous Flux	Φ_{V}	$\mathrm{I}_{\mathrm{F}}=1050 \mathrm{~mA}$	Init. Value * 0.7	Init. Value * 1.1

6. Soldering Conditions
a) Reflow Conditions (Pb free)

Reflow frequency: 2 times max.

b) Manual Soldering Conditions

Not more than 5 seconds @ max. $300{ }^{\circ} \mathrm{C}$, under soldering iron.

7. Tape \& Reel

a) Taping Dimension
(unit: mm)

Taping Direction

b) Reel Dimension
(unit: mm)

Notes:

1) Quantity: The quantity/reel is 800 pcs
2) Cumulative tolerance: Cumulative tolerance / 10 pitches is $\pm 0.2 \mathrm{~mm}$
3) Adhesion strength of cover tape: Adhesion strength is $0.1-0.7 \mathrm{~N}$ when the cover tape is turned off from the carrier tape at 10° angle to the carrier tape
4) Packaging: P/N, Manufacturing data code no. and quantity are indicated on the aluminum packing bag
8. Label Structure
a) Label Structure

Note: Denoted bin code and product code above is only an example (see description on page 7)

Bin Code:
(a)(b): Forward Voltage bin (refer to page 9)
(c)(d): Chromaticity bin (refer to page 10~13)
(e)f: Luminous Flux bin (refer to page 7-8)
b) Lot Number

The lot number is composed of the following characters:

${ }^{c} 7 \mathbf{T H}_{\text {us }} \quad$ U2Q1T2

SPHWHTL3DA0TV4QTS6 U2Q1T2
III
(1)(2)(3)(4)(5)(7)(8)(9/I(a)(b)(C)/800 pcs
||
SAMSUNG
(1)(2)(3)(4)(5)(6)(7)(8)(9) $/ I$ (a)(b)(c) $/ 800 \mathrm{pcs}$
(1), (2) : Production site (GB : Nanchang, China)
(3) : Product state (A: Normal, B: Bulk, C: First Production, R: Reproduction, S: Sample)
(4) : Year (Y: 2014, Z: 2015, A: 2016, B: 2017, C: 2018, D: 2019 ...)
(5) : Month (1~9, A, B, C)
(6) : Day $(1 \sim 9, A, B \sim V)$
(7)(8)(9) : Product serial number (001~999)
(a)(b) : Reel number (001~999)

9. Packing Structure

a) Packing Process

Reel

c ITus U2Q1T2

SPHWHTL3DAOTV4QTS6 U2Q1T2 ||I||| GLAY94001 / 1001 / 800 pcs ||

SNMSUNG

Aluminum Vinyl Packing Bag

Outer Box

Material: Paper SW(B)

Type	Size (mm)			Note
	(a)	(b)	(c)	
7 inch (L)	245 ± 5	220 ± 5	182 ± 5	Up to 8 reels
7 inch (S)	245 ± 5	220 ± 5	86 ± 5	Up to 4 reels

c ${ }^{-1}$ U U

SPHWHTL3DAOTV4QTS6 U2Q1T2
 GLAY94001 / I001 / 6,400 pcs IIIIIIIIIIII|||||||||||||||||||||||||||||||

SAMSUNG

1. Shell life in sealed bag: 12 months at $<40 \mathrm{C}$ and $<90 \%$ relative humidity (RH)
2. Peak package body temperature: 240 C
3. Ater this bag is opened, devioes that will be subjocted to reflow solidor or other high tempernture processes must be
a. Mounted within 672 hours at factory conditions of equal to or less than 30t $/ 60 \% \mathrm{RH}$, or
b. Stoned at $<10 \%$ RH
4. Devioes require bake, before mounting, if:
a.Humidity Indicator Card is $>65 \%$ when read at $23 \pm 5{ }^{\circ}$ c, or b. 2 a is not met.
5. If baking is nequined, devios must be baked for 1 hours at $60 \pm 5{ }^{\circ}$

Note: 1 i devise containers cannot be subjected to high temperature or shorter bake times are desired, reference IPC/JEDEC J-STD-033 for bake procedure,

Bag seal due date: \qquad
(f blank, see code label)
Note: Level and body temperature by IPC/JEDEC J-STD-020

주의 사항

이 알류미늡 지퍼 맥은 슴기 및 정전기로부터 제품을 벼ㄹㅗㅗㅎㅏ 기 위하여 제작되였습니다. 개봉 후에는 즉시 솔더 작업을 실 시하는 것을 권장합니다.
슦기 및 정전기로누터 제품을 보호 하기 위혜서 개붕 후 사용 하지 않는 자재는 본 偝애 놓이 보론 하시기 바랍니다. 사용하 지 않는 자재를 분 팩에 넣을 매는 반드시 통봉뎐 드라이 빼 과 합쩨 넣포 지퍼부불을 완정하게 밀방하여 주시기 바랍니다.

${ }_{c} \mathrm{~N}_{\text {us }}$
 U2Q1T2

SPHWHTL3DA0TV4QTS6 U2Q1T2

GLAY94001 / I001 / 800 pcs

SAMSUNG

(C

- Important

This Al Zipper bag is designed to protect the enclosed products from moisture and ESD. Once opened, the products should be soldered onto the printed circuit board immediately. When not in use, please do not leave the products unprotected by the Al Zipper Bag. To repack unused products., please ensure the zip-lock is completely sealed with the dry pack left inside.
c) Silica Gel \& Humidity Indicator Card inside Aluminum Vinyl Bag

10. Precautions in Handling \& Use

1) For over-current protection, users are recommended to apply resistors connected in series with the LEDs to mitigate sudden change of the forward current caused by shift of forward voltage.
2) This device should not be used in any type of fluid such as water, oil, organic solvent, etc. When cleaning is required, IPA is recommended as the cleaning agent. Some solvent-based cleaning agent may damage the silicone resins used in the device.
3) When the device is in operation, the forward current should be carefully determined considering the maximum ambient temperature and corresponding junction temperature.
4) LEDs must be stored in a clean environment. If the LEDs are to be stored for three months or more after being shipped from Samsung, they should be packed with a nitrogen-filled container (shelf life of sealed bags is 12 months at temperature 0~40 ${ }^{\circ} \mathrm{C}$, 0~90 \% RH).
5) After storage bag is opened, device subjected to soldering, solder reflow, or other high temperature processes must be:
a. Mounted within 672 hours (28 days) at an assembly line with a condition of no more than $30{ }^{\circ} \mathrm{C} / 60 \% \mathrm{RH}$, or
b. Stored at <10\% RH
6) Repack unused devices with anti-moisture packing, fold to close any opening and then store in a dry place.
7) Devices require baking before mounting, if humidity card reading is $>60 \%$ at $23 \pm 5{ }^{\circ} \mathrm{C}$.
8) Devices must be baked for 1 hour at $60 \pm 5^{\circ} \mathrm{C}$, if baking is required.
9) The LEDs are sensitive to the static electricity and surge current. It is recommended to use a wrist band or antielectrostatic glove when handling the LEDs. If voltage exceeding the absolute maximum rating is applied to LEDs, it may cause damage or even destruction to LED devices. Damaged LEDs may show some unusual characteristics such as increase in leakage current, lowered turn-on voltage, or abnormal lighting of LEDs at low current.
10) VOCs (Volatile Organic Compounds) can be generated from adhesives, flux, hardener or organic additives used in luminaires (fixtures). Transparent LED silicone encapsulant is permeable to those chemicals and they may lead to a discoloration of encapsulant when they exposed to heat or light. This phenomenon can cause a significant loss of light emitted (output) from the luminaires. In order to prevent these problems, we recommend users to know the physical properties of materials used in luminaires and they must be carefully selected.

Legal and additional information.

About Samsung Electronics Co., Ltd
Samsung Electronics Co., Ltd. inspires the world and shapes the future with transformative ideas and technologies, redefining the worlds of TVs, smartphones, wearable devices, tablets, cameras, digital appliances, printers, medical equipment, network systems and semiconductors.
We are also leading in the Internet of Things space through, among others, our Digital Health and Smart Home initiatives. We employ 307,000 people across 84 countries. To discover more, please visit our official website at www.samsung.com and our official blog at global.samsungtomorrow.com.

Copyright © 2017 Samsung Electronics Co., Ltd. All rights reserved.
Samsung is a registered trademark of Samsung Electronics Co., Ltd.
Specifications and designs are subject to change without notice. Non-metric weights and measurements are approximate. All data were deemed correct at time of creation. Samsung is not liable for errors or omissions. All brand, product, service names and logos are trademarks and/or registered trademarks of their respective owners and are hereby recognized and acknowledged.

Samsung Electronics Co., Ltd.
1, Samsung ro
Giheung-gu
Yongin-si, Gyeonggi-do, 17113
KOREA
www.samsungled.com

