

MODEL NO :	TM123XDGP0 ²	1
MODEL VERSION:	00	
SPEC VERSION :	2.1	
ISSUED DATE:	2021-05-27	
	<pre>/ Specification uct Specification</pre>	

Customer :		
	Approved by	Notes
	S	

TIANMA Confirmed :

Prepared by	Checked by	Approved by
Panpan Cao	Longping_Deng	Xiaoxing Ding

The information contained herein is the exclusive property of TIANMA MICRO-ELECTRONICS Corporation and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of TIANMA MICRO-ELECTRONICS Corporation.

Table of Contents

Tab	le of Contents	2
Rec	cord of Revision	3
1	General Specifications	4
2	Input/Output Terminals	
3	Absolute Maximum Ratings	
4	Electrical Characteristics	
5	Timing Characteristics	
6	Optical Characteristics	17
7	Environmental / Reliability Test	
8	Mechanical Drawing	21
9	Packing Drawing	
10	Precautions for Use of LCD Modules	25

Record of Revision

Rev	Issued Date	Description	Editor
1.0	2020-03-05	Preliminary Product Specification Release	Panpan Cao
1.1	2020-09-16	Change LED Life time from 2W to 3W on page 11	Longping.Deng
1.2	2020-11-30	Update Mechanical Drawing to Page 22	Bei Lei
2.0	2021-01-28	Final Specification Released.	Bei Lei
2.1	2021-05-27	Update Luminance SPEC in page 17.	Panpan Cao
			<i>¥</i>
	· · · · ·		

The information contained herein is the exclusive property of TIANMA MICRO-ELECTRONICS Corporation and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of TIANMA MICRO-ELECTRONICS Corporation.

1 General Specifications

	Feature	Spec	
	Size	12.3 inch	
	Resolution	1920(RGB) x 720	
	Technology Type	a-Si	
Display Spec.	Pixel Configuration	R.G.B. Vertical Stripe	
Display Spec.	Pixel pitch(mm)	0.15225 x 0.15225	
	Display Mode	TM with Normally Black	
	Surface Treatment	HC	
	Viewing Direction	All direction	
	LCM (W x H x D) (mm)	305.92 x 123.62 x 7 (typ.)	
	Active Area(mm)	292.32×109.62	
Mechanical	With /Without TSP	Without TSP	
Characteristics	Connector Type	LCM:FH41-50S-0.5SH BL:FH52-10S-0.5SH	
	LED Numbers	4 parallels 8serials	
	Weight (g)	322	
Electrical	Interface	2-port LVDS (VESA)	
Characteristics	Color Depth	16.7M	

Note 1: Requirements on Environmental Protection: Q/S0002

Note 2: LCM weight tolerance: ± 5%

The information contained herein is the exclusive property of TIANMA MICRO-ELECTRONICS Corporation and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of TIANMA MICRO-ELECTRONICS Corporation.

2 Input/Output Terminals

Model No. TM123XDGP01

2.1 TFT LCD panel

1 2				Remark
	GND	Р	GND	
	GND	Р	GND	
3	VLCD	Р	Power supply for LCD (3.3V)	
4	VLCD	Р	Power supply for LCD (3.3V)	
5	VLCD	Р	Power supply for LCD (3.3V)	
6	VLCD	Р	Power supply for LCD (3.3V)	
7	GND	Р	GND	
8	GND	Р	GND	
9	NC	Ν	Tianma internal used	
<u> </u>			Custom must floating	Note1
10	NC	Ν	Tianma internal used	
		D	Custom must floating	
11	GND	P P	GND	
12 13	GND OLV0N	Р 	GND	
13	OLVON	1	Odd LVDS data input 0- Odd LVDS data input 0+	
14	GND	P	GND	
16	OLV1N		Odd LVDS data input 1-	
17	OLV1N OLV1P		Odd LVDS data input 1-	
18	GND	P	GND	
19	OLV2N	Г 	Odd LVDS data input 2-	
20	OLV2N OLV2P	1	Odd LVDS data input 2-	
20	GND	P	GND	
22	OCLKN		Odd LVDS Clock input -	
22	OCLKP	1	Odd LVDS Clock input -	
23	GND	P	GND	
25	OLV3N	-	Odd LVDS data input 3-	
26	OLV3N OLV3P		Odd LVDS data input 3- Odd LVDS data input 3+	
20	GND	P	GND	
28	ELVON		Even LVDS data input 0-	
29	ELVOR		Even LVDS data input 0+	
30	GND	P	GND	
31	ELV1N		Even LVDS data input 1-	
32	ELV1P		Even LVDS data input 1+	
33	GND	P	GND	
34	ELV2N	-	Even LVDS data input 2-	
35	ELV2P		Even LVDS data input 2+	
36	GND	P	GND	
37	ECLKN		Even LVDS Clock input -	
38	ECLKP		Even LVDS Clock input +	

Connector Type : FH41-50S-0.5SH

39	GND	Р	GND	
40	ELV3N	I	Even LVDS data input 3-	
41	ELV3P		Even LVDS data input 3+	
42	GND	Р	GND	
43	NC(CSB)	Ν	Tianma internal used Custom must floating	Note1
44	RESET	Ι	Global reset pin, RESET=H,normal operation. RESET=L,The controller is in reset state.	
45	NC	Ν	Tianma internal used Custom must floating	
46	NC	Ν	Tianma internal used Custom must floating	
47	HVR	I	Horisontally and Vertically Inverted	Note 2
48	STYB	I	Standby mode control STYB="H", Normal operation. STYB="L", Source output GNDA level.	
49	ASIL	0	Output for fail detection	Note 3
50	NC(VDD_ OTP)	Ν	Tianma internal used Custom must floating	Note1

I/O definition:

I----Input O----Output I/O----Input/Output P----Power/Ground N---No Connect

Note 1: Custom must floating

Note 2: HVR controled by customer

HVR	Function	Remark
Н	Left→Right, Top→Bottom	Default
L	Right→Left, Bottom→Top	-

TIANMA	

Type 1 (Default HVR="H")


AMNAIT	

Type 2 (HVR="L")

Model No. TM123XDGP01

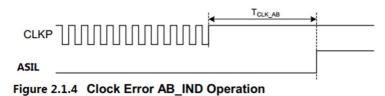

Note 3: ASIL: normally pull L in IC, active "H"(when Hsync or Vsync or Clk miss, this pin will pull "H"

Figure 2.1.3 DE Mode AB_IND Operation

Note: For 1920RGBx720 resolution, T_{HVDS_AB} ~= 10.7ms for DE and HS detection~60ms for VS detection.

The Clock Error Detection function monitors the Clock signal, if the clock pulse stopped longer than the criterion, AB_IND will output High for error indication.

Note: For 1920RGBx720 resolution, T_{CLK AB} ~= 234us

When CLK lost, Tsp det is about 234us.

When DE lost, Tsp_det is about 10.7ms.

Don't connect this pin to an output pin in customer system, it may be connected to input pin or NC.

Please keep no any pull up or pull low resister connect to this pin on your system when this pin is used for fail detection.

Model No. TM123XDGP01

2.2 Pin assignment for one of the backlight interface

Connector type: FH52-10S-0.5SH

No	Symbol	I/O	Description	Remark
1	A1/A2	Р	LED positive1/2	
2	A3/A4	Р	LED positive3/4	
3	NC	Ν	No connection	
4	C1	Р	LED negative1	
5	C2	Р	LED negative2	
6	C3	Р	LED negative3	
7	C4	Р	LED negative4	
8	NC	Ν	No connection	
9	NTC-	0	Connector Thermistor Resistor	
10	NTC+	0	Connector Thermistor Resistor	•

I/O definition:

I----Input O----Output

I/O----Input/Output

P----Power/Ground

N-No Connect

3 Absolute Maximum Ratings

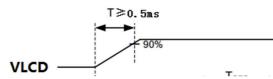
3.1 Driving TFT LCD Panel

GND=0V, Ta = 25°C

Item	Symbol	Min	Max	Unit	Remark
supply voltage	VLCD	-0.5	5	V	
Operating Temperature	Тор	-30	85	°C	
Storage Temperature	Tst	-40	90	°C	

Note 1: Ta means the ambient temperature.

It is necessary to limit the relative humidity to the specified temperature range. Condensation on the module is not allowed.

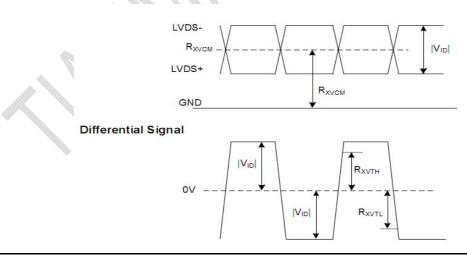


4 Electrical Characteristics

4.1 Driving TFT LCD Panel

ltem	Symbol	Min	Тур	Мах	Unit	Remark
Supply Voltage	VLCD	3.2	3.3	3.4	V	
Permissible Inrush current of VDD	lvlcd			1200	mA	Note 1
Input High Voltage	V _{IH}	0.7*VLCD		VLCD	V	Note 2
Input Low Voltage	V _{IL}	GND		0.3*VLCD	V	NOLE 2
Power Consumption	White mode (60Hz)		1070	1605	mW	Note 3

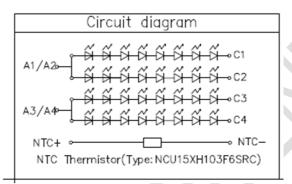
Note 1:


Note 2: Contain RESET, STYB, HVR

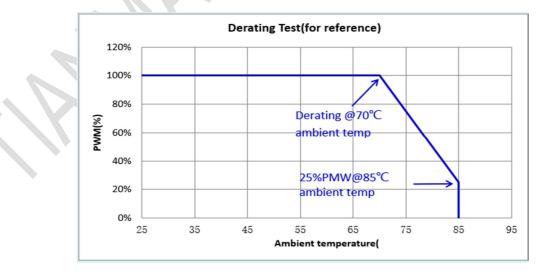
Note 3: VLCD=3.3V.

LVDS Interface DC characteristic:

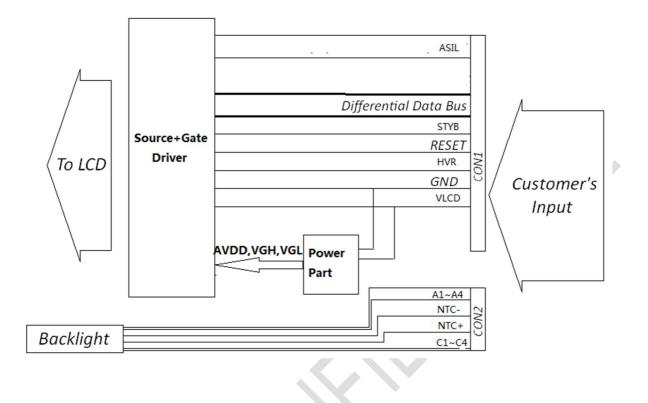
Parameter	Symbol Condition			Unit		
Falameter	Symbol	Symbol Condition		Тур	Max	Unit
Differential input high threshold voltage	Rxvтн		-	-	+0.2	V
Differential input low threshold voltage	RxVTL		-0.2-		-	V
Differential input common mode voltage	Rx/см	-	1	1.2	1.7- Vid /2	V
Differential input voltage	Vid	-	0.2	-	0.6	V


Single-end Signal:

4.2 DC Characteristics for Backlight Driving


ltem	Symbol	Min	Тур	Max	Unit	Remark	
Forward Current	+ 25 ℃	I _F		120		mA	Note1
Forward voltage	+ 25 ℃	V_BL		24		V	I _F =120mA
Backlight Power Consumption	+ 25 ℃	WBL		11.5		W	I _F =120mA
Life Time		-	30000	-	-	Hrs	Note2

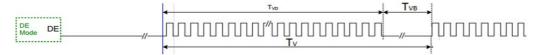
- Note 1: IF=120mA is defined for one channel LED, There are total 4 LED channels in back light unit Under LCM operating, the stable forward current should be inputted.
- Note 2: Optical performance should be evaluated at Ta=25°C only. If LED is driven by high current, high ambient temperature & humidity condition. The life time of LED will be reduced. Operating life means brightness goes down to 50% of original brightness.
- Note 3: it is suggested Customer to make sure the LCM module in the system is well heatdissipation.

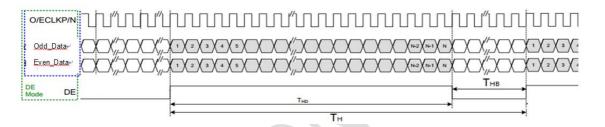

Note 4: The NTC thermistor Part No.is NCU15XH103F6SRC. NTC thermistor is included in LED circuit. pls refer to appendix for NTC temperature behavior.

Note 5: The LED circuit de-rating curve evaluated as below,LED forward current should follow the De-rating curve and the NTC resistance should not be below $0.xx \ k\Omega$.

4.3 Block Diagram

The information contained herein is the exclusive property of TIANMA MICRO-ELECTRONICS Corporation and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of TIANMA MICRO-ELECTRONICS Corporation.

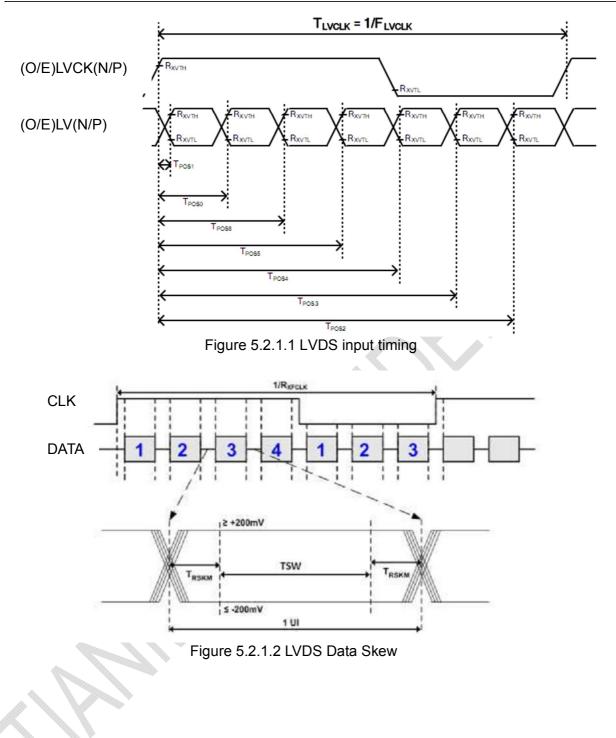

5 Timing Characteristics


5.1 Input Timing

5.1.1 Input timing chart

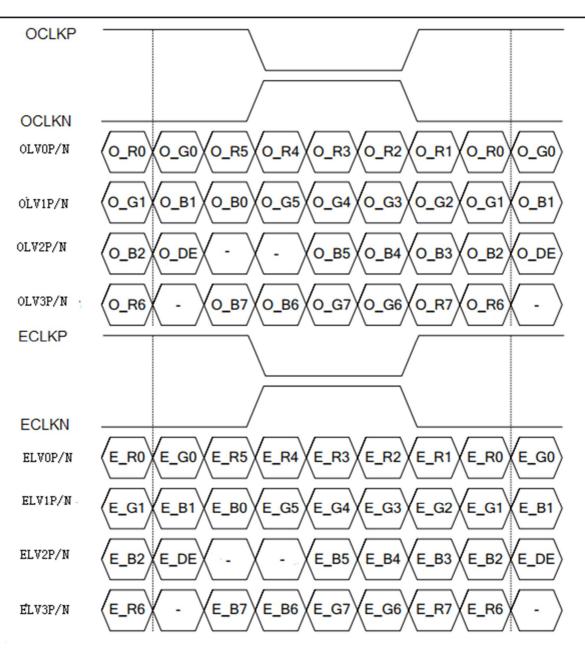
Parameter	Symbol	Min.	Тур.	Max.	Unit	
CLK frequency	FCLK	44.6	44.7	50.2	MHz	
Horizontal display area	T _{HD}		960		CLK	
HS period time	T _H	1023	1024	1060	CLK	
HS blanking	Тнв	60	64	190	CLK	
Vertical display area	T _{VD}		720		Н	
VS period time	Tv	726	728	849	Н	
VS blanking	Тив	6	8	129	Н	
V Frequence	fv		60		Hz	

5.1.2 LVDS input timing format



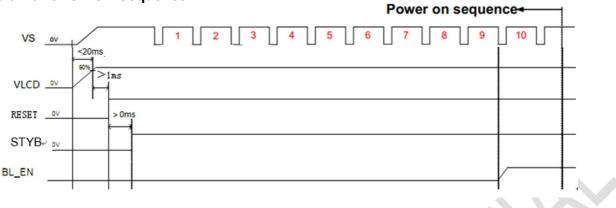
5.2 LVDS timing 5.2.1 LVDS Timing

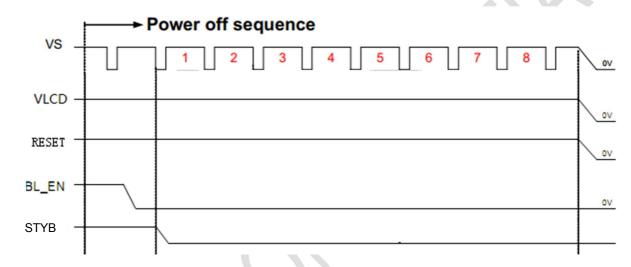
Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
Clock frequency	FLVCLK	25	-	85	MHz	Refer to input timing table for each display resolution.
Clock Period	TLVCLK	11.76	-	40	ns	
Clock high time	TLVCH	-	4/(7* TLVCLK)	-	ns	
Clock low time	TLVCL	-	3/(7* TLVCLK)	-	ns	
Input data skew margin	TRSKM	-	-	0.25	UI	VCC_IF=1.8V w/o SSC
Strobe width	TSW	0.5	-	-	UI	
1 data bit time	UI	-	1/7	-	TLV CLK	
Position 1	TPOS1	-0.25	0	0.25	UI	
Position 0	TPOS0	0.75	1	1.25	UI	
Position 6	TPOS6	1.75	2	2.25	UI	
Position 5	TPOS5	2.75	3	3.25	UI	
Position 4	TPOS4	3.75	4	4.25	UI	
Position 3	TPOS3	4.75	5	5.25	UI	
Position 2	TPOS2	5.75	6	6.25	UI	



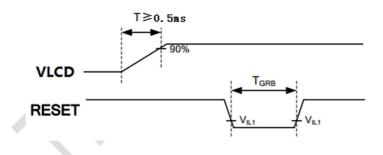
The information contained herein is the exclusive property of TIANMA MICRO-ELECTRONICS Corporation and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of TIANMA MICRO-ELECTRONICS Corporation.

5.2.2 dual-Link LVDS input Data Format





The information contained herein is the exclusive property of TIANMA MICRO-ELECTRONICS Corporation and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of TIANMA MICRO-ELECTRONICS Corporation.


5.3 Power On/Off Sequence

5.4 VLCD/RESET Timing

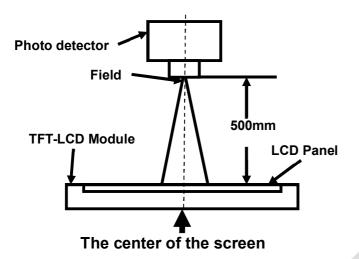
Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
VLCD power source slew time	TPOR	-	-	20	ms	From 0V to 90% VLCD
RESET active pulse width	T _{GRB}	1	-	-	ms	VDDIO = 3.3V

6 Optical Characteristics

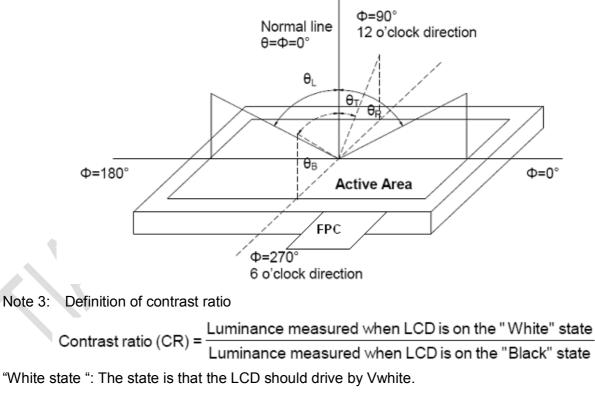
Ta=25℃

ltem		Symbol	Condition	Min	Тур	Max	Unit	Remark
		U		80	88			
		D	CR≥10	80	88		Dograa	
View Ang	les	L	CR≥10	80	88		Degree	
		R		80	88	-		
Contrast R	atio	CR	Perpendicu lar,25℃	900	1100			Note3
Response ⁻	Time	Ton+Toff	25 ℃			20	ms	Note4
	W	Х		0.247	0.297	0.347		
	vv	у		0.276	0.326	0.376		
	Ded	х		0.581	0.631	0.681		× .
Chromoticity	Red	у	Backlight 0.287 0.337 0.387		Note5			
Chromaticity	Green	Х	is on	0.250	0.300	0.350		Notes
		у		0.585	0.635	0.685		
	Blue	Х		0.098	0.148	0.198		
	Diue	у		0.013	0.063	0.113		
Uniformi	Uniformity			75	80		%	Note6
NTSC			Perpendicu lar	72	75		%	Note5
Luminance		L	Perpendicu lar,25℃	1100	1400		cd/m ²	Note7 LCD module

Test Conditions:


- 1. I_F = 90mA(one channel), there are total 4 LED channels in back light unit Under LCM operating , the stable forward current should be inputted, the ambient temperature is 25°C.
- 2. The test systems refer to Note 1 and Note 2.

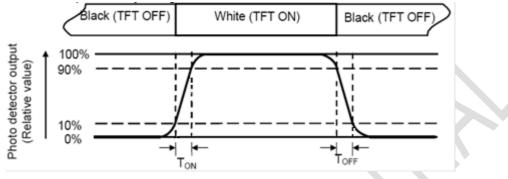
The information contained herein is the exclusive property of TIANMA MICRO-ELECTRONICS Corporation and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of TIANMA MICRO-ELECTRONICS Corporation.


Note 1: Definition of optical measurement system.

The optical characteristics should be measured in dark room. After 5 Minutes operation, the optical properties are measured at the center point of the LCD screen. All input terminals LCD panel must be ground when measuring the center area of the panel.

Note 2: Definition of viewing angle range and measurement system.

viewing angle is measured at the center point of the LCD.

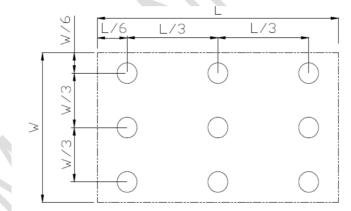

"Black state": The state is that the LCD should drive by Vblack.

Vwhite: To be determined Vblack: To be determined.

Note 4: Definition of Response time

The response time is defined as the LCD optical switching time interval between "White" state and "Black" state. Rise time (T_{ON}) is the time between photo detector output intensity changed from 90% to 10%. And fall time (T_{OFF}) is the time between photo detector output intensity changed from 10% to 90%.

Note 5: Definition of color chromaticity (CIE1931)


Color coordinates measured at center point of LCD.

Note 6: Definition of Luminance Uniformity

Active area is divided into 9 measuring areas (Refer Fig. 2). Every measuring point is placed at the center of each measuring area.

Luminance Uniformity (U) = Lmin/ Lmax

L-----Active area length W----- Active area width

Lmax: The measured Maximum luminance of all measurement position.

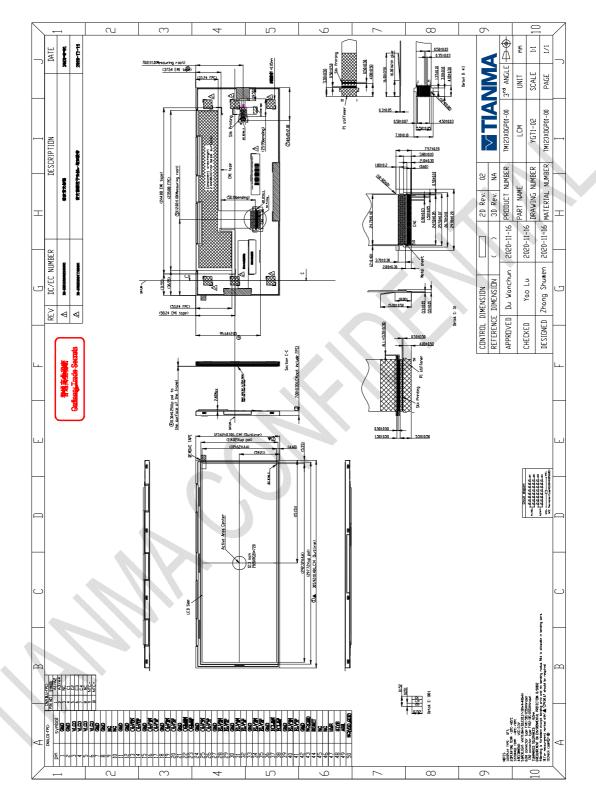
Lmin: The measured Minimum luminance of all measurement position.

Note 7: Definition of Luminance:

Measure the luminance of white state at center point.

The information contained herein is the exclusive property of TIANMA MICRO-ELECTRONICS Corporation and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of TIANMA MICRO-ELECTRONICS Corporation.

7 Environmental / Reliability Test


N o	Test Item	Test condition	Criterion
1	High Temperature Storage	95℃ 240H RH<=45% Restore 24H at 25℃ Power off	IEC60068-2-1:2007 GB2423.2-2008
2	Low Temperature Storage	-40℃ 240H Restore 24H at 25℃ Power off	IEC60068-2-1:2007 GB2423.1-2008
3	High Temperature Operation	+85 240H RH<=45% Restore 24H at 25℃ Power on	IEC60068-2-1:2007 GB2423.2-2008
4	Low Temperature Operation	-30℃ 240H Restore 24H at 25℃ Power on	IEC60068-2-1:2007 GB2423.1-2008
5	High Temperature & Humidity Operation	60℃, 90%RH 240H Restore 24H at 25℃ Power on	IEC60068-2-78 :2001 GB/T2423.3—2016
6	Thermal Shock (non-operation)	-40 $^{\circ}$ C \rightarrow change \rightarrow +85 $^{\circ}$ C 30min 5min 30min, 100cycle Restore 24H at 25 $^{\circ}$ C	Start with cold temperature, End with high temperature, IEC60068-2-14:1984, GB2423.22-2012
7	Vibration (Non-operation)	Frequency: 10~55Hz Stroke: 1.5mm Sweep: 10Hz~55Hz~10Hz 120min for each direction of X.Y.Z.	IEC600682-6:1982 GB2423.10-2019
8	Shock (Non-operation)	Half Sine Wave 60G ,6ms,±X,±Y,±Z 3times for each direction	IEC60068-2-27:1987 GB/T2423.5—2019
9	ESD	C=150 pF、R=330 Ω, 5point/panel Air V=±8kV; Contact V=±4kV, 5 times/ each point	IEC61000-4-2:2001 GB/T 17626.6-2006
10	Package Vibration	Frequency range: 5-20-200HZ, PSD : 0.01-0.01-0.001 Total:0.781g ² /Hz, 30min for each direction of X.Y.Z.	GB/T 2423.56-2018
11	Package Drop	Height: 60 cm, 1corner,3edges,6surfaces Total weight≤10Kg [,] Height:80cm; Total weight>10Kg, [,] Height:60cm;	GB/T 4857.5-1992

Note 1: Before cosmetic and function test, the product must have enough recovery time, at least 24 hours at room temperature.

Note 2: In the standard condition, there shall be no practical problem that may affect the display function. After the reliability test, the product only guarantees operation, but don't guarantee all of the cosmetic specification.

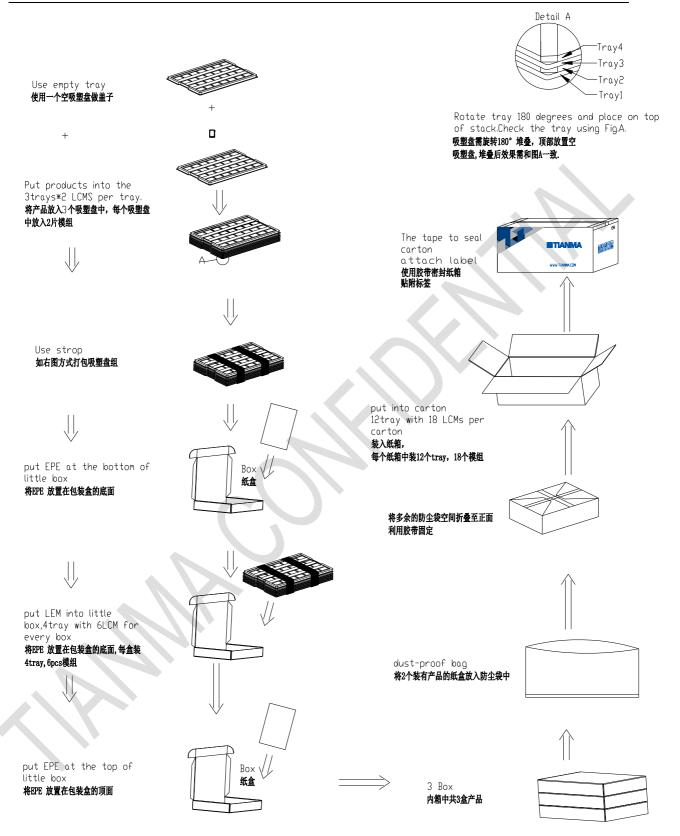
8 Mechanical Drawing

9 Packing Drawing

Per Carton

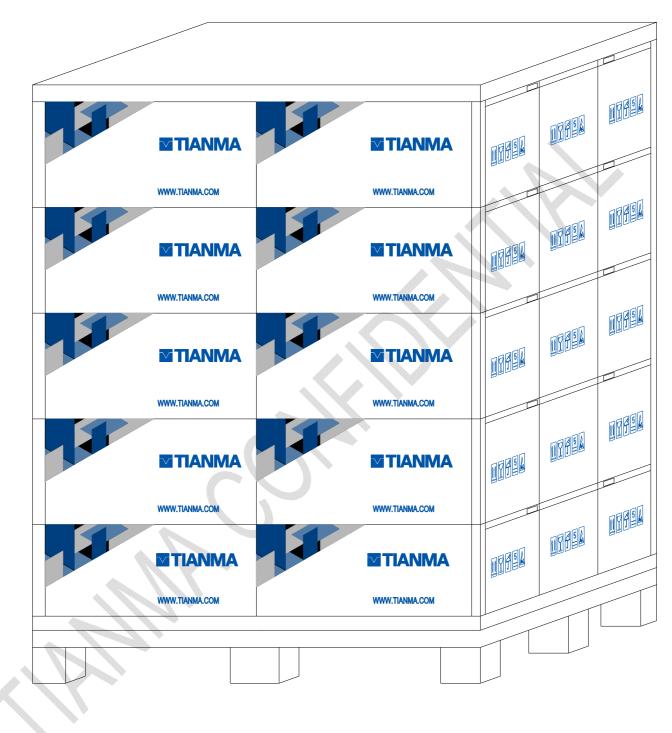
No	Item	Model (Material)	Dimensions(mm)	Unit Weight(Kg)	Quantity	Material Number		
1	LCM module	TM123XDGP01-00	305.92×123.62×7.00	0.322	18	5.796		
2	Tray	PET	485×330×18.5	0.22	12	2.64		
3	Dust-proof Bag	PE	700×545×0.05	0.021	1	0.021		
4	Carton	Corrugated Paper	544×365×250	1.01	1	1.01		
5	EPE	EPE	485×330×5mm	0.016	6	0.096		
6	BOX	Corrugated Paper	520×345×74mm	0.38	3	1.14		
7	Label		100×52	0.001	1	0.001		
8	Total weight	10.7±5% Kg						

(Packaging Specification and Quantity)


(1) LCM quantity per tray: 2row×1column =2

(2) Total LCM quantity in Carton: Number of PET trays 5× quantity per tray 2= 10

Note: Please refer to the data from "estimated report about the dimension and stack of Carton " about stacking carton



Model No. TM123XDGP01

纸箱堆叠数按2*3每层*共5层

The information contained herein is the exclusive property of TIANMA MICRO-ELECTRONICS Corporation and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of TIANMA MICRO-ELECTRONICS Corporation.

10 Precautions for Use of LCD Modules

- 10.1 Handling Precautions
- 10.1.1 The display panel is made of glass. Do not subject it to a mechanical shock by dropping it from a high place, etc.
- 10.1.2 If the display panel is damaged and the liquid crystal substance inside it leaks out, be sure not to get any in your mouth, if the substance comes into contact with your skin or clothes, promptly wash it off using soap and water.
- 10.1.3 Do not apply excessive force to the display surface or the adjoining areas since this may cause the color tone to vary.
- 10.1.4 The polarizer covering the display surface of the LCD module is soft and easily scratched. Handle this polarizer carefully.
- 10.1.5 If the display surface is contaminated, breathe on the surface and gently wipe it with a soft dry cloth. If still not completely clear, moisten cloth with one of the following solvents:
- Isopropyl alcohol
- Ethyl alcohol

Solvents other than those mentioned above may damage the polarizer. Especially, do not use the following:

- Water
- Ketone
- Aromatic solvents

10.1.6 Do not attempt to disassemble the LCD Module.

- 10.1.7 If the logic circuit power is off, do not apply the input signals.
- 10.1.8 To prevent destruction of the elements by static electricity, be careful to maintain an optimum work environment.
- 10.1.8.1 Be sure to ground the body when handling the LCD Modules.
- 10.1.8.2 Tools required for assembly, such as soldering irons, must be properly ground.

10.1.8.3 To reduce the amount of static electricity generated, do not conduct assembly and other work under dry conditions.

10.1.8.4 The LCD Module is coated with a film to protect the display surface. Be care when peeling off this protective film since static electricity may be generated.

10.2 Storage precautions

- 10.2.1 When storing the LCD modules, avoid exposure to direct sunlight or to the light of fluorescent lamps.
- 10.2.2 The LCD modules should be stored under the storage temperature range. If the LCD modules will be stored for a long time, the recommend condition is:
- Temperature : 0° C ~ 40° C Relatively humidity: $\leq 80^{\circ}$
 - 10.2.3 The LCD modules should be stored in the room without acid, alkali and harmful gas. 10.3 Transportation Precautions
 - 10.3.1 The LCD modules should be no falling and violent shocking during transportation, and also should avoid excessive press, water, damp and sunshine.